Skip to main content
Log in

Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KozikowskiA.P., MillerC.P., YamadaF., PangY.-P., MillerJ.H., McKinneyM. and BallR.G., J. Med. Chem., 34 (1991) 3399.

    Google Scholar 

  2. StoddardB.L. and KoshlandJr.D., Proc. Natl. Acad. Sci. USA, 90 1993 1146.

    Google Scholar 

  3. YueS.Y., Protein Eng., 4 (1990) 177.

    Google Scholar 

  4. CherfilsJ., DuquerroyS. and JaninJ., Protein Struct. Funct. Genet., 11 (1991) 271.

    Google Scholar 

  5. GoodsellD.S. and OlsonA.J., Protein Struct. Funct. Genet., 8 (1990) 195.

    Google Scholar 

  6. KuntzI.D., Science, 257 (1992) 1078.

    Google Scholar 

  7. WodakS.J. and JaninJ., J. Mol. Biol., 124 (1978) 323.

    Google Scholar 

  8. KuntzI.D., BlaneyJ.M., OatleyS.J., LangridgeR. and FerrinT.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  9. SalemmeF.R., J. Mol. Biol., 102 (1976) 563.

    Google Scholar 

  10. WarwickerJ., J. Mol. Biol., 206 (1989) 381.

    Google Scholar 

  11. BaconD.J. and MoultJ., J. Mol. Biol., 225 (1992) 849.

    Google Scholar 

  12. GoodfordP.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  13. KirkpatrickS., GolattC.D.J. and VecchiM.P., Science, 220 (1983) 671.

    Google Scholar 

  14. StoddardB.L. and KoshlandJr.D., Nature, 358 (1992) 774.

    Google Scholar 

  15. YamadaM. and ItaiA., Chem. Pharm. Bull., 41 (1993) 1200.

    Google Scholar 

  16. DeakyneC.A. and Meot-NerM., J. Am. Chem. Soc., 107 (1985) 474.

    Google Scholar 

  17. BurleyS.K. and PetskoG.A., FEBS Lett., 203 (1986) 139.

    Google Scholar 

  18. LovittM. and PerutzM.F., J. Mol. Biol., 201 (1988) 751.

    Google Scholar 

  19. DoughertyD.A. and StaufferD.A., Science, 250 (1990) 751.

    Google Scholar 

  20. HarelM., SchalkI., EhretsabatierL., BouetF., GosidnerM., HirthC., AxelsonP.H., SilmanI. and SussmanJ.L., Proc. Natl. Acad. Sci. USA. 90 (1993) 9031.

    Google Scholar 

  21. VerdonkM.L., BoksG.J., KooijmanH., KantersJ.A. and KroonJ., J. Comput. Aided Mol. Design. 7 (1993) 173.

    Google Scholar 

  22. WaksmanG., ShoelsonS.E., PantN., CowburnD. and KuriyanJ., Cell, 72 (1993) 779.

    Google Scholar 

  23. Perutz, M.F., Phil. Trans. R. Soc., in press.

  24. SussmanJ.L., HarelM., FrolowF., OefnerC., GoldmanA., TokerL. and SilmanI., Science, 253 (1991) 872.

    Google Scholar 

  25. ClarkM., CramerR.D.I. and VanOpdenboschN., J. Comput. Chem., 8 (1989) 982.

    Google Scholar 

  26. BrooksB.R., BruccoleriR.E., OlafsonB.D., StatesD.J., SwaminathanS. and KarplusM., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  27. WeinerS.J., KollmanP.A., CaseD.A., SinghU.C., GhioC., AlagonaG., ProfetaJr.S.J. and WeinerP., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  28. HaglerA.T., HulerE. and LifsonS., J. Am. Chem. Soc., 96 (1974) 5319.

    Google Scholar 

  29. LifsonS., HaglerA.T. and DauberP., J. Am. Chem. Soc., 101 (1979) 5111.

    Google Scholar 

  30. VanGunsterenW.F. and BerendsenH.J.C., Angew. Chem., Int. Ed. Engl., 29 (1990) 992.

    Google Scholar 

  31. McCammonJ.A., GelinB.R. and KarplusM., Nature, 267 (1977) 585.

    Google Scholar 

  32. KozikowskiA.P., MaD., PangY.-P., ShumP., LikicV., MishraP.K., MacuraS., BasuA., LazoJ.S. and BallR.G., J. Am. Chem. Soc., 115 (1993) 3957.

    Google Scholar 

  33. BernsteinF.C., KoetzleT.F., WilliamsG.J., MeyerJr.E., BriceM.D., RodgersJ.R., KennardO., ShimanouchiT. and TasumiM., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  34. JorgensenW.L., J. Am. Chem. Soc., 103 (1981) 335.

    Google Scholar 

  35. BurleyS.K. and PetskoG.A., Science, 229 (1985) 23.

    Google Scholar 

  36. HunterC.A. and SandersK.M., J. Am. Chem. Soc., 112 (1990) 5525.

    Google Scholar 

  37. PangY.-P. and KozikowskiA.P., J. Comput.-Aided Mol. Design, 8 (1994) 683.

    Google Scholar 

  38. PomponiM., GiardinaB., GattaF. and MartaM., Med. Chem. Res., 2 (1992) 306.

    Google Scholar 

  39. RadleZ., ReinerE. and TaylorP., Mol. Pharmacol., 39 (1991) 98.

    Google Scholar 

  40. AshaniY., PegginsIIIJ.O. and DoctorB.P., Biochem. Biophys. Res. Commun., 184 (1992) 719.

    Google Scholar 

  41. KozikowskiA.P., XiaY., ReddyE.R., TueckmantelW., HaninI. and TangX.-C., J. Org. Chem., 56 (1991) 4636.

    Google Scholar 

  42. WangY.E., YueD.X. and TangX.C., Acta Pharmacol. Sin., 7 (1986) 110.

    Google Scholar 

  43. MeKinneyM., MillerJ.H., YamadaF., TueckmantelW. and KozikowskiA.P., Eur. J. Pharmacol., 203 (1991) 303.

    Google Scholar 

  44. ShoichetB.K., StroudR.M., SantiD.V., KuntzI.D. and PerryK.M., Science, 259 (1993) 1445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, YP., Kozikowski, A.P. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. J Computer-Aided Mol Des 8, 669–681 (1994). https://doi.org/10.1007/BF00124014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124014

Key words

Navigation