Skip to main content
Log in

Experimental micrometeorology in an era of turbulence simulation

  • Editorial
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Micrometeorologists have traditionally used the framework of the ensemble mean, fluctuating decomposition in studying turbulence spectra, Reynolds-flux budgets, surface-exchange relations, and the universal functions of Monin-Obukhov similarity within the “constant-flux” layer. More recently, the growth in supercomputers and computational fluid dynamics has stimulated micrometeorological applications of large-eddy simulation (LES). LES uses a different framework, one based on the resolvable, subgrid-scale decomposition. This framework shift seems to have weakened the vital and historically strong coupling between experimental and computational work in micrometeorology. A challenge for experimentalists today is to address problems posed in the language of the resolvable, subgrid-scale decomposition. We illustrate by discussing measurement strategies for resolvable-scale turbulence fields and for local surface-exchange coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrén, A., Brown, A. R., Graf, L., Moeng, C.-H., Nieuwstadt, F. T. M., and Schumann, U.: 1994, ‘Large-Eddy Simulation of a Neutrally Stratified Boundary Layer: A Comparison of Four Computer Codes’, Quart. J. Roy. Meteorol. Soc. 120, 1457–1484.

    Google Scholar 

  • Batchelor, G. K.: 1960, The Theory of Homogeneous Turbulence, Cambridge University Press, 197 pp.

  • Bradshaw, P.: 1972, ‘The Understanding and Prediction of Turbulent Flow’, Aero. J. 76, 403–418.

    Google Scholar 

  • Coleman, G. N., Ferziger, J. H., and Spalart, P. R.: 1990, ‘A Numerical Study of the Turbulent Ekman Layer’, J. Fluid Mech. 213, 313–348.

    Google Scholar 

  • Deardorff, J. W.: 1970, ‘Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection’, J. Atmos. Sci. 27, 1211–1213.

    Google Scholar 

  • Deardorff, J. W.: 1972, ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’, J. Atmos. Sci. 29, 91–115.

    Google Scholar 

  • Edsall, R. M., Thomson, D. W., Wyngaard, J. C., and Peltier, L. J.: 1995, ‘A Technique for Measurement of Resolvable-Scale Flux Budgets’, 11th Symp. on Boundary Layers and Turbulence, AMS, Boston.

    Google Scholar 

  • Khanna, S., Brasseur, J. G., and Wyngaard, J. C.: 1995, ‘Analysis of Monin-Obukhov Similarity from High-Resolution Large-Eddy Simulations of the Atmospheric Boundary Layer’, 11th Symp. on Boundary Layers and Turbulence, AMS, Boston.

    Google Scholar 

  • Leonard, A.: 1973, ‘Energy Cascade in Large Eddy Simulation of Turbulent Flows’, Adv. Geophys. 18A, 237–248.

    Google Scholar 

  • Lumley, J. L.: 1983, ‘Atmospheric Modelling’, Mech. Eng. Trans., Inst. of Eng. Australia ME8, 153–159.

    Google Scholar 

  • Lumley, J. L. and Panofsky, H. A.: 1964, The Structure of Atmospheric Turbulence, Interscience, New York, 239 pp.

    Google Scholar 

  • Mason, P. J.: 1989, ‘Large Eddy Simulation of the Convective Atmospheric Boundary Layer’, J. Atmos. Sci. 46, 1492–1516.

    Google Scholar 

  • Mason, P. J. and Thomson, D. J.: 1992, ‘Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers’, J. Fluid Mech. 242, 51–78.

    Google Scholar 

  • McComb, W. D.: 1990, The Physics of Fluid Turbulence, Oxford University Press, 572 pp.

  • Moeng, C.-H.: 1984, ‘A Large-Eddy-Simulation Model for the Study of Planetary Boundary Layer Turbulence’, J. Atmos. Sci. 41, 2052–20G2.

    Google Scholar 

  • Moeng, C.-H. and Wyngaard, J. C.: 1989, ‘Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modeling’, J. Atmos. Sci. 46, 2311–2330.

    Google Scholar 

  • Nieuwstadt, F. T. M., Mason, P. J., Moeng, C.-H., and Schumann, U.: 1993, ‘Large-Eddy Simulation of the Convective Boundary Layer: A Comparison of Four Computer Codes’, in F. Durst, R. Friedrich, B. E. Launder, F. W. Schmidt, U. Schumann, and J. H. Whitelaw (eds.), Turbulent Shear Flows 8, Springer-Verlag, Berlin, 430 pp.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence, Wiley, New York, 397 pp.

    Google Scholar 

  • Peltier, L. J., Wyngaard, J. C., Khanna, S., and Brasseur, J. G.: 1996, ‘Spectra in the Unstable Surface Layer’, J. Atmos. Sci., In Press.

  • Smits, A. J.: 1992, ‘The Interplay between Experiment and Computation in the Study of Turbulence’, Experimental Thermal and Fluid Science 5, 579–585.

    Google Scholar 

  • Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence, MIT Press, Cambridge, 300 pp.

    Google Scholar 

  • Wyngaard, J. C.: 1992, ‘Atmospheric Turbulence’, Ann. Rev. Fluid Mech. 24, 205–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyngaard, J.C., Peltier, L.J. Experimental micrometeorology in an era of turbulence simulation. Boundary-Layer Meteorol 78, 71–86 (1996). https://doi.org/10.1007/BF00122487

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122487

Keywords

Navigation