Skip to main content
Log in

Parametric representation of heat and moisture fluxes in cloud-topped mixed layers

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Aircraft measurements were made from the NCAR Electra in stratus and stratocumulus clouds off the coast of California in June 1976. Several types of cloud conditions were observed, including (1) a broken layer less than 100 m thick, capped by an inversion at ~1000 m, (2) a broken stratocumulus layer ~300 m thick with an inversion at ~500 m, and (3) a ‘solid’ stratocumulus layer ~250 m thick with an inversion at ~500 m. Although these observations indicate that a variety of cloud conditions may exist in mixed layers, simple one-dimensional mixed-layer models implicitly assume a solid cloud layer with no unsaturated region within the cloud. In order to generalize these simple models, a parametric representation of the heat and moisture fluxes is considered. In this scheme, the fluxes are parameterized in terms of the product of a cloud mass flux and the characteristic difference between the thermodynamic properties of an updraft-downdraft circulation. This representation allows for an explicit representation of the buoyancy flux when the downdraft has no liquid water.

Data collected during these flights were used to calculate heat and moisture fluxes and to obtain the mean difference in the thermodynamic properties of the updrafts and downdrafts at a given level. The mass flux was calculated using updraft-downdraft differences and the fluxes. The mass fluxes obtained using various thermodynamic quantities are examined for consistency. The vertical distribution of the mass flux is determined. These results indicate that a mass flux formulation could prove to be useful in modeling applications where cloud conditions may vary between solid and broken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, B. A.: 1979, ‘A Model of the Thermodynamic Structure of the Trade Wind Boundary Layer: Part II. Applications’, J. Atmos. Sci. 36, 90–98.

    Google Scholar 

  • Albrecht, B. A., Betts, A. K., Schubert, W. H., and Cox, S. K.: 1979a, ‘A Model of the Thermodynamic Structure of the Trade Wind Boundary Layer: Part I Theoretical Development and Sensitivity Tests’, J. Atmos. Sci. 36, 73–89.

    Google Scholar 

  • Albrecht, B. A., Cox, S. K., and Schubert, W. H.: 1979b, ‘Radiometric Measurements of In-Cloud Temperature Fluctuations’, J. App. Meteorol. 18, 1066–1071.

    Google Scholar 

  • Albrecht, B. A., Penc, R. S., and Schubert, W. H.: 1985, ‘An Observational Study of Cloud-Topped Mixed Layers’, J. Atmos. Sci. 42, 800–822.

    Google Scholar 

  • Arakawa, A. and Schubert, W.: 1974, ‘Interaction of a Cumulus Cloud Ensemble with the Large Scale Environment: Part I’, J. Atmos. Sci. 31, 674–701.

    Google Scholar 

  • Ball, F. K.: 1960, ‘Control of Inversion Height by Surface Heating’, Quart. J. Roy. Meteorol. Soc. 86, 483–494.

    Google Scholar 

  • Betts, A. K.: 1973, ‘Non-Precipitating Cumulus Convection and its Parameterization’, Quart. J. Roy. Meteorol. Soc. 99, 178–196.

    Google Scholar 

  • Betts, A. K.: 1975, ‘Parametric Interpretation of Trade Wind Cumulus Budget Studies’, J. Atmos. Sci. 32, 1934–1945.

    Google Scholar 

  • Betts, A. K.: 1976, ‘Modeling Subcloud Layer Structure and Interaction with a Shallow Cumulus Layer’, J. Atmos. Sci. 33, 2363–2382.

    Google Scholar 

  • Betts, A. K.: 1978, ‘Convection in the Tropics’, in D. B. Shaw (ed.), Meteorology Over the Tropical Oceans, Royal Meteor. Soc., pp. 105–132.

  • Betts, A. K.: 1983, ‘Thermodynamics of Mixed Stratocumulus: Saturation Point Budget’, J. Atmos. Sci. 40, 2665–2670.

    Google Scholar 

  • Brost, R. A., Lenschow, D. H., and Wyngaard, J. C.: 1982a, ‘Marine Stratocumulus Layers. Part I: Mean Conditions’, J. Atmos. Sci. 39, 818–836.

    Google Scholar 

  • Brost, R. A., Wyngaard, J. C., and Lenschow, D. H.: 1982b, ‘Marine Stratocumulus Layers. Part II: Turbulence Budgets’, J. Atmos. Sci. 39, 818–836.

    Google Scholar 

  • Deardorff, J. W.: 1976, ‘On the Entrainment Rate of a Stratocumulus-Topped Mixed Layer’, Quart. J. Roy. Meteorol. Soc. 102, 563–582.

    Google Scholar 

  • Deardorff, J. W.: 1980a, ‘Stratocumulus Capped Mixed Layers Derived from a Three-Dimensional Model’, Boundary-Layer Meteorol. 18, 495–527.

    Google Scholar 

  • Deardorff, J. W.: 1980b, ‘Cloud-Top Entrainment Instability’, J. Atmos. Sci. 37, 131–147.

    Google Scholar 

  • Esbensen, S.: 1975, ‘An Analysis of Subcloud Layer Heat and Moisture Budgets in the Western Atlantic Trades’, J. Atmos. Sci. 32, 1921–1932.

    Google Scholar 

  • Greenhut, G. K. and Khalsa, S. J. S.: 1982, ‘Updraft and Downdraft Events in the Atmospheric Boundary Layer Over the Equatorial Pacific Ocean’, J. Atmos. Sci. 39, 1803–1818.

    Google Scholar 

  • Grossman, R. L. and Bean, B. R.: 1973, ‘An Aircraft Investigation of Turbulence in the Lower Layers of a Marine Boundary Layer’, NOAA Tech. Rept. ERL 291-WMPO 4, 166.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugren, D. A., Coté, G. R., Izumi, Y., and Schaller, E.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Kato, H. and Phillips, O. M.: 1969, ‘On the Penetrations of a Turbulent Layer into a Stratified Fluid’, J. Fluid Mech. 37, 643–655.

    Google Scholar 

  • Kraus, H. and Schaller, E.: 1978a, ‘Steady State Characteristics of Inversions Capping a Well-Mixed PBL’, Boundary-Layer Meteorol. 14, 83–104.

    Google Scholar 

  • Kraus, H. and Schaller, E.: 1978b, ‘A Note on the Closure in Lilly-Type Inversion Models’, Tellus 30, 284–288.

    Google Scholar 

  • LeMone, M. A.: 1980b, ‘On the Difficulty in Measuring Temperature and Humidity in Cloud: Comments on “Shallow Convection on Day 261 of Gate: Mesoscale Arcs”’, Monthly Weather Rev. 108, 1702–1705.

    Google Scholar 

  • Lenschow, D. H. and Pennell, W. T.: 1974, ‘On the Measurement of In-Cloud and Wet Bulb Temperatures from Aircraft’, Mon. Wea. Rev. 102, 447–454.

    Google Scholar 

  • Lenschow, D. H. and Stephens, P. O.: 1980, ‘The Role of Thermals in the Convective Boundary Layer’, Boundary-Layer Meteorol. 19, 509–532.

    Google Scholar 

  • Lilly, D. K.: 1968, ‘Models of Cloud-Topped Mixed Layers Under a Strong Inversion’, Quart. J. Roy. Meteorol. Soc. 94, 292–309.

    Google Scholar 

  • Nicholls, S. and LeMone, M. A.: 1980, ‘The Fair Weather Boundary Layer in GATE: The Relationship of Subcloud Fluxes and Structure to the Distribution and Enhancement of Cumulus Clouds’, J. Atmos. Sci. 37, 2051–2067.

    Google Scholar 

  • Nitta, T.: 1975, ‘Observational Determination of Cloud Mass Flux Distributions’, J. Atmos. Sci. 32, 73–91.

    Google Scholar 

  • Ogura, Y. and Cho, H. R.: 1973, ‘Diagnostic Determination of Cumulus Cloud Populations from Observed Large-Scale Variables’, J. Atmos. Sci. 30, 1276–1286.

    Google Scholar 

  • Ooyama, K.: 1971, ‘A Theory on Parameterization of Cumulus Convection’, J. Meteorol. Soc. of Japan 49, 744–756, Special Issue.

    Google Scholar 

  • Penc, R. S.: 1983, ‘Heat and Moisture Fluxes in Cloud-Topped Mixed Layer’, M.S. Thesis, The Pennsylvania State University, p. 122.

  • Randall, D. A.: 1980a, ‘Conditional Instability of the First Kind Upside Down’, J. Atmos. Sci. 37, 125–130.

    Google Scholar 

  • Randall, D. A.: 1980b, ‘Entrainment into a Stratocumulus Layer with Distributed Radiative Cooling’, J. Atmos. Sci. 37, 148–159.

    Google Scholar 

  • Sarachik, E. S.: 1974, ‘The Tropical Mixed Layer and Cumulus Parameterization’, J. Atmos. Sci. 31, 2225–2230.

    Google Scholar 

  • Schubert, W. H.: 1976, ‘Experiments with Lilly's Cloud-Topped Mixed Layer Model’, J. Atmos. Sci. 33, 436–446.

    Google Scholar 

  • Schubert, W. H., Wakefield, J. S., Cox, S. K., and Steiner, E. J.: 1979a, ‘Marine Stratocumulus Convection. Part I: Governing Equations and Horizontally Homogeneous Solutions’, J. Atmos. Sci. 36, 1286–1307.

    Google Scholar 

  • Schubert, W. H., Wakefield, J. S., Cox, S. K., and Steiner, E. J.: 1979b, ‘Marine Stratocumulus Convection. Part II: Horizontally Inhomogeneous Solutions’, J. Atmos. Sci. 36, 1308–1324.

    Google Scholar 

  • Stage, S. A. and Businger, J. A.: 1981a, ‘A Model for Entrainment into a Cloud-Topped Marine Boundary Layer. Part I: Model Description and Application to a Cold Air Outbreak Episode’, J. Atmos. Sci. 38, 2213–2229.

    Google Scholar 

  • Stage, S. A. and Businger, J. A.: 1981b, ‘A Model for Entrainment into a Cloud-Topped Marine Boundary Layer. Part II: Discussion of Model Behavior and Comparison to other Models’, J. Atmos. Sci. 38, 2230–2242.

    Google Scholar 

  • Wakefield, J. S. and Schubert, W. H.: 1976, ‘Design and Execution of the Marine Stratocumulus Experiment’, Atmos. Sci. Paper No. 256, Colorado State University, p. 74.

  • Willis, G. E. and Deardorff, J. W.: 1974, ‘A Laboratory Model of the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 31, 1297–1307.

    Google Scholar 

  • Yanai, M., Esbensen, S., and Chou, J.: 1973, ‘Determination of Bulk Properties of Tropical Cloud Clusters from Large Scale Heat and Moisture Budgets’, J. Atmos. Sci. 30, 611–627.

    Google Scholar 

  • Zeman, O. and Tennekes, H.: 1977, ‘Parameterization of the Turbulent Energy Budget at the Top of the Daytime Atmospheric Boundary Layer’, J. Atmos. Sci. 34, 111–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penc, R.S., Albrecht, B.A. Parametric representation of heat and moisture fluxes in cloud-topped mixed layers. Boundary-Layer Meteorol 38, 225–248 (1987). https://doi.org/10.1007/BF00122446

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122446

Keywords

Navigation