Skip to main content
Log in

Spectral methods for atmospheric diffusion modeling

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The rate of diffusion of a cloud depends on cloud dimensions. As the cloud enlarges, larger eddies come into play and the rate of diffusion increases. The turbulent diffusion process is scale-dependent. The gradient-transfer theory (K-theory) is only appropriate when the dimensions of the dispersed material are much larger than the size of the turbulent eddies. Introduction of a spectral turbulent diffusivity function (STD) makes it possible to treat the diffusive transport in a Eulerian system, with diffusivity effectively dependent on the actual size of the concentration distribution. The basic innovation is that diffusion is treated in the Fourier space and the diffusion coefficient is dependent on the wave number of the Fourier components of the concentration distribution. It is shown that the concept of the wave-number-dependent diffusivity leads to a non-local flux-gradient relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batchelor, G. K.: 1953, The Theory of Homogeneous Turbulence, Cambridge University Press, pp.197.

  • Batchelor, G. K. and Townsend, A. A.: 1956, ‘Turbulent diffusion’, in Surveys in Mechanics, ed. G. K. Batchelor and R. M. Davies, Cambridge University Press, 352–399.

  • Berkowicz, R. and Prahm, L. P.: 1979, ‘Generalization of K-theory for turbulent diffusion. Part I. Spectral turbulent diffusivity concept’, J.Appl.Met. 18, 266–272.

    Google Scholar 

  • Berkowicz, R. and Prahm, L. P.: 1980, ‘On the spectral turbulent diffusivity theory for homogeneous turbulence’, J.Fluid Mech. 100, 433–448.

    Google Scholar 

  • Berkowicz, R. and Prahm, L. P.: 1984, ‘Spectral representation of the vertical structure of turbulence in the convective boundary layer’, Quart.J.Roy.Meteorol.Soc. 110 (in press).

  • Berkowicz, R., Prahm, L. P. and Louis, J. F.: 1979, ‘Global 2-D spectral dispersion model’, WMO Rep. no. 538, Proc. WMO Symp. on the Long-Range Transport of Pollutants and its Relation to General Circulation Including Stratospheric-Tropospheric Exchange Processes, Sofia.

  • Bærentsen, J. H. and Berkowicz, R.: 1984, ‘Monte Carlo simulation of plume dispersion in the convective boundary layer’, Atm. Env. 18, (in press).

  • Christensen, O. and Prahm, L. P.: 1976, ‘A pseudospectral model for dispersion of atmospheric pollutants’, J.Appl.Meteorol. 15, 1284–1294.

    Google Scholar 

  • Enger, L.: 1983, ‘Numerical boundary layer modeling with application to diffusion’, A Two Dimensional Higher Order Closure Model, Department of Meteorology, University of Uppsala, Report No. 70-71, pp.54.

  • Heisenberg, W.: 1948, ‘Zur statistischen Theorie der Turbulenz’ Z.Phys. 124, 628–657.

    Google Scholar 

  • Kraichnan, R. H.: 1959, ‘The structure of isotropic turbulence at very high Reynolds numbers’, J.Fluid Mech. 5, 497–543.

    Google Scholar 

  • Lamb, R. G.: 1978, ‘A numerical simulation of dispersion from an elevated point source in the convective planetary boundary layer’, Atm.Env. 12, 1297–1304.

    Google Scholar 

  • Leslie, D. C.: 1973, Developments in the Theory of Turbulence, Clarendon Press, pp.368.

  • Lewellen, W. S. and Teske, M. E.: 1976, ‘Second-order closure modeling of diffusion in the atmospheric boundary layer’, Boundary-Layer Meteorol. 10, 69–90.

    Google Scholar 

  • Markee, E. H.: 1963, ‘On the relationships of range to standard deviation of wind fluctuations’, Mon.Weath.Rev. 91, 83–87.

    Google Scholar 

  • Monin, A. S.: 1955, ‘Equation of turbulent diffusion’, Dokl.Akad.Nauk SSSR 105, 256–259.

    Google Scholar 

  • Monin, A. S.: 1956, ‘Horizontal mixing in the atmosphere’, Isv.Akad.Nauk SSSR, Ser.Geofiz. 3. 327–345.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1965, Statistical Fluid Mechanics of Turbulence, Part I. Washington, Trans-Joint Publication Research Service, pp.769.

    Google Scholar 

  • Pasquill, F.: 1974, Atmospheric Diffusion, 2nd edition, Wiley, pp.425.

  • Pedersen, P. N. and Kristensen, H. S.: 1982, Experimental Investigation of Diffusion of Particles in Turbulent Flows, AFM 82-04, Department of Fluid Mechanics, Technical University of Denmark, pp.46 (Danish)

  • Pedersen, P. N., Tambo, M. and Kristensen, H. S.: 1984, Concentration Measurements using a Laser Doppler Anemometer, AFM 81-8, Department of Fluid Mechanics, Technical University of Denmark, pp.23.

  • Phythian, R. and Curtis, W. D.: 1978, ‘The effective long-time diffusivity for a passive scalar in a Gaussian model fluid flow’, J.Fluid Mech. 89, 241–250.

    Google Scholar 

  • Prahm, L. P. and Christensen, O.: 1977, ‘Long-range transport of pollutants simulated by the 2-D pseudospectral dispersion model’, J.Appl. Met. 16. 896–910.

    Google Scholar 

  • Prahm, L. P., Berkowicz, R. and Christensen, O.: 1979, ‘Generalization of K-theory for turbulent diffusion. Part II. Spectral diffusivity model for plume dispersion’, J.Appl.Met. 18, 273–282.

    Google Scholar 

  • Prandtl, L.: 1925, ‘Bericht über Untersuchungen zur ausgebildeten Turbulentz’, Z.Angew.Math.Mech. 5, 136–139.

    Google Scholar 

  • Roberts, P. H.: 1961, ‘Analytical theory of turbulent diffusion’, J.Fluid Mech. 11, 257–283.

    Google Scholar 

  • Schmidt, W.: 1925, ‘Der Massenaustausch in freier Luft und Verwandte Erscheinungen’, Probleme der Kosmischen Physic, Hamburg, Verlag Von Henri Grand, pp.176.

  • Schönfeld, J. C.: 1962, ‘Integral diffusivity’, J.Geophys.Res. 67, 3187–3199.

    Google Scholar 

  • Taylor, G. I.: 1921, ‘Diffusion by continuous movements’, Proc. London Math.Soc. 20 (Ser. 2), 196–211.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1976, ‘A laboratory model of diffusion into the convective planetary boundary layer’, Quart.J.Roy.Meteorol.Soc. 102, 427–445.

    Google Scholar 

  • Zlatev, Z., Berkowicz, R. and Prahm, L. P.: 1982, ‘Choice of time-integration scheme in pseudospectral algorithm for advection equations’, Numerical Methods for Fluid Dynamics, eds. K. W. Morton and M. J. Baines, Academic Press, London, 303–321.

    Google Scholar 

  • Zlatev, Z., Berkowicz, R. and Prahm, L. P.: 1983, ‘Numerical treatment of the advection-diffusion equation. Part 6, Special treatment of the diffusion terms’, MST LUFT — A72, Air Pollution Laboratory, National Agency of Environmental Protection, Risø National Laboratory, DK-4000 Roskilde, Denmark, pp.35.

    Google Scholar 

  • Zlatev, Z., Berkowicz, R. and Prahm, L. P.: 1983, ‘Testing subroutines solving advection-diffusion equations in atmospheric environments’, Computer and Fluids, 11, 13–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkowicz, R. Spectral methods for atmospheric diffusion modeling. Boundary-Layer Meteorol 30, 201–219 (1984). https://doi.org/10.1007/BF00121955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121955

Keywords

Navigation