Skip to main content
Log in

Quantum holography and neurocomputer architectures

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

It is generally accepted among neuroscientists that the sensory cortex of the brain is arranged in a layered structure. Based on a unified quantum holographic approach to artificial neural network models implemented with coherent, hybrid optoelectronic, or analog electronic neurocomputer architectures, the present paper establishes a novel identity for the matching polynomials of complete bichromatic graphs which implement the intrinsic connections between neurons of local networks located in neural layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Jewell, Y.H. Lee, A. Scherer, S.L. McCall, N.A. Olsson, J.P. Harbison, and L.T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections”, Opt. Eng., vol. 29, pp. 210–214, 1990.

    Google Scholar 

  2. E.G. Paek, J.R. WullertII, M. Jain, A.Von Lehmen, A. Scherer, J. Harbison, L.T. Florez, H.J. Yoo, J.L. Jewel, and Y.H. Lee, “Compact and ultrafast holographic memory using a surface-emitting microlaser diode array”, Opt. Lett., vol. 15, pp. 341–343, 1990.

    Google Scholar 

  3. E.G. Paek, J.R. Wullert II, A. Von Lehmen, J.S. Patel, M. Jain, A. Scherer, J. Harbison, L.T. Florez, H.J. Yoo, and R. Martin, “Implementation of neural network models by using coherent optics”, in Spatial Light Modulators and Applications III: Critical Reviews of Optical Science and Technology, U. Efron, ed., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1150, pp. 192–203, 1990.

  4. D.Z. Anderson, “Coherent optical eigenstate memory”, Opt. Lett., vol. 11, pp. 56–58, 1986.

    Google Scholar 

  5. D.Z. Anderson, “Nonlinear optical neural networks: dynamic ring oscillators”, in Neural Computers, R. Eckmiller and C.v.d. Malsburg, eds., Springer: Berlin, 1989, pp. 417–424.

    Google Scholar 

  6. D.Z. Anderson, “Competitive and cooperative dynamics in nonlinear optical circuits”, in An Introduction to Neural and Electronic Networks, S.F. Zornetzer, J.L. Davis, and C. Lau, eds., Academic Press: San Diego, CA, 1990, pp. 349–362.

    Google Scholar 

  7. D.Z. Anderson and M.C. Erie, “Resonator memories and optical novelty filters,” Opt. Eng., vol. 26, pp. 434–444, 1987; also in Optical Computing, H.J. Caulfield and G. Gheen, eds., SPIE Optical Engineering Press: Bellingham, WA, 1989, pp. 585–595.

    Google Scholar 

  8. D.Z. Anderson and D.M. Lininger, “Dynamic optical interconnects: volume holograms as optical two-port operators”, Appl. Opt., vol. 26, pp. 5031–5038, 1987.

    Google Scholar 

  9. Y. Owechko, “Optoectronic resonator nearal networks”, Appl. Opt., vol. 26, pp. 5104–5114, 1987; also in Optical Computing, H.J. Caulfield and G. Gheen, eds., SPIE Optical Engineering Press, Bellingham, WA, 1989, pp. 577–584.

    Google Scholar 

  10. Y. Owechko, “Holographic associative memories,” in Spatial Light Modulators and Applications III: Critical Reviews of Optical Science and Technology, U. Efron, ed., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1150, pp. 164–176, 1990.

  11. Y. Owechko, E. Marom, B.H. Soffer, and G. Dunning, “Associative memory in a phase conjugate resonator cavity utilizing a hologram,” in 1986 International Optical Computing Conference, J. Shamir, A.A. Friesem, and E. Marom, eds., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 700, pp. 296–300, 1986.

  12. Y. Owechko, G.J. Dunning, E. Marom, and B.H. Soffer, “Holographic associative memory with nonlinearities in the correlation domain”, Appl. Opt., vol. 25, pp. 1900–1910, 1987; also in Optical Computing, H.J. Caulfield and G. Gheen, eds., SPIE Optical Engineering Press: Bellingham, WA, 1989, pp. 566–576.

    Google Scholar 

  13. D. Psaltis, “Two-dimensional optical processing using one-dimensional input devices”, Proc. IEEE, vol. 72, pp. 962–974, 1984.

    Google Scholar 

  14. D. Psaltis and N. Farhat, “Optical information processing based on an associative-memory model of neural nets with thresholding and feedback”, Opt. Lett., vol. 10, pp. 98–100, 1985; also in Optical Computing, H.J. Caulfield and G. Gheen, eds., SPIE Optical Engineering Press: Bellingham, WA, 1989, pp. 515–517.

    Google Scholar 

  15. D. Psaltis, D. Brady and K. Wagner, “Adaptive optical networks using photorefractive crystals”, Appl. Opt., vol. 27, pp. 1752–1759, 1988; also in Optical Computing, H.J. Caulfield and G. Gheen, eds., SPIE Optical Engineering Press: Bellingham, WA, 1989, pp. 603–610.

    Google Scholar 

  16. D. Psaltis, D. Brady, X. Gu, and K. Hsu, “Optical implementation of neural computers”, in Optical Processing and Computing, H.H. Arsenault, T. Szoplik, and B. Macukow, eds., Academic Press: Boston, 1989, pp. 251–276.

    Google Scholar 

  17. D. Psaltis, C.H. Park, and J. Hong, “Higher order associative memories and their optical implementations”, Neural Net., vol. 1, pp. 149–163, 1988.

    Google Scholar 

  18. T. Allen, C. Mead, F. Faggin, and G. Gribble, “Orientation-selective VLSI retina”, in Visual Communications and Image Processing '88, T.R. Hsing, ed., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1001, pp. 1040–1046, 1988.

  19. C. Mead, Analog VLSI and Neural Systems, Addison-Wesley: Reading, MA, 1989.

    Google Scholar 

  20. C.A. Mead and M.A. Mahowald, “A silicon model of early visual processing”, Neural Net., vol. 1, pp. 91–97, 1988.

    Google Scholar 

  21. J. Lazzaro and C.A. Mead, “A silicon model of auditory localization”, Neural Comput., vol. 1, pp. 47–57, 1989.

    Google Scholar 

  22. C. Mead and M. Ismail, Analog VLSI Implementation of Neural Systems, Kluwer Academic: Boston, 1989.

    Google Scholar 

  23. N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley: Reading, MA, 1985.

    Google Scholar 

  24. J.F. Price, “Uncertainty principles and interference patterns”, in Proc. Centre for Mathematical Analysis of the Australian National University, vol. 9, pp. 241–258, 1985.

  25. J. Uffink and J. Hilgevoord, “Interference and distinguishability in quantum mechanics”, Physica B, vol. 151, pp. 309–313, 1988.

    Google Scholar 

  26. A. Peremolov, Generalized Coherent States and Their Applications, Springer-Verlag: New York, 1986.

    Google Scholar 

  27. P. Cartier, “Quantum mechanical commutation relations and theta functions”, in Algebraic Groups and Discontinuous Subgroups, Proc. Symp. in Pure Math., vol. 9, A. Borel and G.D. Mostow, eds., American Mathematical Society: Providence, RI, 1966, pp. 361–383.

    Google Scholar 

  28. R. Howe, “Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons”, in Applications of Group Theory in Physics and Mathematical Physics, M. Flato, P. Sally, and G. Zuckerman, eds., American Mathematical Society: Providence, RI, 1985, pp. 179–207.

    Google Scholar 

  29. W. Schempp, Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory, Pitman Research Notes in Mathematics, vol. 147, John Wiley: New York, 1986 (second edition in preparation).

    Google Scholar 

  30. D.G. Feitelson, Optical Computing, MIT Press: Cambridge, MA, 1988.

    Google Scholar 

  31. D.A. Baylor, T.D. Lamb, and K.-W. Yau, “Responses of retinal rods to single photons”, J. Physiol., vol. 288, pp. 613–634, 1979.

    Google Scholar 

  32. J.A. Wheeler, “The ‘past’ and the ‘delayed-choice’ double-slit experiment”, in Mathematical Foundations of Quantum Theory, A.R. Marlow, ed., Academic Press: New York, 1978, pp. 9–48.

    Google Scholar 

  33. J.A. Wheeler, “Frontiers of time”, in Problems in the Foundations of Physics, Proc. Int. School of Physics “Enrico Fermi”, G.T.di Francia, ed., North-Holland: Amsterdam 1979, pp. 395–497.

    Google Scholar 

  34. J.A. Wheeler, “Beyond the black hole”, in Some Strangeness in the Proportion: A Centennial Symposium to Celebrate the Achievements of Albert Einstein, H. Woolf, ed., Addison-Wesley: Reading, MA, 1980, pp. 341–375.

    Google Scholar 

  35. J.A. Wheeler, “Particles and geometry”, in Unified Theories of Elementary Particles, Proc. Heisenberg Symposium, Lecture Notes in Physics, vol. 160, Springer-Verlag: Berlin, 1982, pp. 189–217.

    Google Scholar 

  36. J.A. Wheeler, “The computer and the universe”, Int. J. Theor. Phys., vol. 21, pp. 557–572, 1982.

    Google Scholar 

  37. J.A. Wheeler, “Law without law”, in Quantum Theory and Measurement, J.A. Wheeler and W.H. Zurek, eds., Princeton University Press: Princeton, NJ, 1983, pp. 182–213.

    Google Scholar 

  38. J.A. Wheeler, “Elementary quantum phenomenon as building unit”, in Quantum Optics, Experimental Gravity, and Measurement Theory, P. Meystre and M.O. Scully, eds., Plenum Press: New York, 1983, pp. 141–143.

    Google Scholar 

  39. W. Schempp, “Neurocomputer architectures”, Results Math., vol. 16, pp. 345–382, 1989.

    Google Scholar 

  40. W. Schempp, “Holographic fractals”, in Signal Theory and image Processing, W. Schempp and D.C. Struppa, eds., Mediterranean Press: Bethesda, MD, to appear.

  41. W. Schempp, “Phase anomalies in optical neural networks”, manuscript, Lehrstuhl fuer Mathematik I, University of Siegen, Siegen, Germany, to appear.

  42. W. Schempp, “Holographic image processing, coherent optical computing, and neural computer architecture for pattern recognition”, in Lie Methods in Optics II, K.B. Wolf, ed., Lecture Notes in Physics, vol. 352, Springer-Verlag: New York, 1989, pp. 19–45.

    Google Scholar 

  43. A Berthon, “Operator groups and ambiguity functions in signal processing”, in Wavelets, J.M. Combes, A. Grossmann, and Ph. Tchamitchian, eds., Springer-Verlag: Berlin, 1989, pp. 172–180.

    Google Scholar 

  44. E. Feig and C.A. Micchelli, “L 2-synthesis by ambiguity functions”, in Multivariate Approximation Theory IV, C.K. Chui, W. Schempp, and K. Zeller, eds., Birkhäuser Verlag: Basel, Switzerland, 1989, pp. 143–156.

    Google Scholar 

  45. E.N. Leith, “Synthetic aperture radar”, in Optical Data Processing, D. Casasent, ed., Springer-Verlag: Berlin, 1978, pp. 89–117.

    Google Scholar 

  46. Radar and sonar, Pt. I, Lect. Notes IMA Summer Progr., Minneapolis/MN (USA) 1990, IMA Vol. Math. Appl. 32, 66–168 (1991).

    Google Scholar 

  47. H.L. Naparst, “Radar signal choice and processing for a dense target environment”, Ph.D. thesis, University of California, Berkeley, CA, 1988.

    Google Scholar 

  48. M. Ould-Beziou, Thèse de doctorat, Université d'Orléans, Orléans, France, 1989.

    Google Scholar 

  49. W. Schempp, “Radar ambiguity functions, the Heisenberg group, and holomorphic theta series”, Proc. Am. Math. Soc., vol. 92, pp. 103–110, 1984.

    Google Scholar 

  50. H.J. Tiziani, “Real-time metrology with BSO crystals”, Opt. Acta, vol. 29, pp. 463–470, 1982.

    Google Scholar 

  51. J. Feinberg, “Optical phase conjugation in photorefractive materials”, in Optical Phase Conjugation, R.A. Fisher, ed., Academic Press: Orlando, FL, 1983, pp. 417–463.

    Google Scholar 

  52. J. Feinberg, “Applications of real-time holography”, in Holography, L. Huff, ed., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 532, pp. 119–135, 1985.

  53. B. Roberts, M.R. Taghizadeh, J. Turunen, and A. Vasara, “Fabrication of space invariant fanout components in dichromatic gelatin”, Appl. Opt., vol. 29, pp. 1134–1141, 1990.

    Google Scholar 

  54. J.P. Fitch, Synthetic Aperture Radar, Springer-Verlag: New York, 1988.

    Google Scholar 

  55. E.N. Leith, “Quasi-holographic techniques in the microwave region”, Proc. IEEE, vol. 59, pp. 1305–1318, 1971.

    Google Scholar 

  56. L.J. Cutrona, E.N. Leith, C.J. Palermo, and L.J. Porcello, “Optical data processing and filtering systems”, Trans. IRE, vol. IT-6, pp. 386–400, 1960.

    Google Scholar 

  57. L.J. Cutrona, E.N. Leith, L.J. Porcello, and W.E. Vivian, “On the application of coherent optical processing techniques to synthetic-aperture radar”, Proc. IEEE, vol. 54, pp. 1026–1032, 1966.

    Google Scholar 

  58. J.W. Goodman, “A short history of the field of optical computing”, in Optical Computing, B.S. Wherett and F.A.P. Tooley, eds., Scottish Universities Summer School in Physics Publications: Edinburgh, 1989, pp. 7–21.

    Google Scholar 

  59. A. Kozma, E.N. Leith, and N.G. Massey, “Tilted-plane optical processor”, Appl. Opt., vol. 11, pp. 1766–1777, 1972.

    Google Scholar 

  60. T.W. Cole, “Fourier theory in modern imaging”, in Fourier Techniques and Applications, J.F. Price, ed., Plenum: New York, 1985, pp. 185–199.

    Google Scholar 

  61. M. King, “Fourier optics and radar signal processing”, in Applications of Optical Fourier Transforms, H. Stark, ed., Academic Press: Orlando, FL, 1982, pp. 209–251.

    Google Scholar 

  62. A. Huang, “Towards a digital optics platform,” in Optics in Complex Systems, F. Lanzl, H.-J. Preuss, and G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1319, pp. 156–160, 1990.

  63. J. Jahns, “Planar packaging of complex optical systems,” in Optics in Complex Systems, F. Lanzl, H.-J. Preuss, and G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1319, pp. 681–682, 1990.

  64. J. Jahns, M.M. Downs, M.E. Prise, N. Streibl, and S.J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng., vol. 28, pp. 1267–1275, 1989.

    Google Scholar 

  65. F. Kiamilev, S.C. Esener, R. Paturi, Y. Fainman, P. Mercier, C.C. Guest, and S.H. Lee, “Programmable optoelectronic multiprocessors and their comparison with symbolic substitution for digital optical computing,” Opt. Eng., 28, pp. 396–409, 1989.

    Google Scholar 

  66. V.P. Koronkevich, “Computer synthesis of diffraction optical elements,” in Optical Processing and Computing, H.H. Arsenault, T. Szoplik, and B. Macukow, eds., Academic Press: Boston, 1989, pp. 277–313.

    Google Scholar 

  67. J. Ohta, M. Takahashi, Y. Nitta, S. Tai, K. Mitsunaga, and K. Kjuma. “A new approach to GaAs/AlGaAs optical neurochip with three layered structure,” in Proc. IEEE Int. Joint Conf on Neural Networks, vol. II, pp. 477–482, 1989.

  68. G.J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” MIT Lincoln Laboratory, Lexington, MA, Tech. Rep. 854, 1989.

    Google Scholar 

  69. G.J. Swanson and W.B. Veldkamp, “Diffractive optical elements for use in infrared systems, Opt. Eng., vol. 28, pp. 605–608, 1989.

    Google Scholar 

  70. A. Aspect, “Testing quantum mechanics in optics,” presented at 15th Congress of the Int. Comm. for Optics: Optics in Complex Systems, Garmisch-Partenkirchen, 1990.

  71. J.A. Yeazell and C.R. Stroud, “Rydberg-atom wave packets localized in the angular variables,” Phys. Rev. A., vol. 35, pp. 2806–2809, 1987.

    Google Scholar 

  72. J.A. Yeazell and C.R. Stroud, “Observation of spatially localized atomic electron wave packets,” Phys. Rev. Lett., vol. 60, pp. 1494–1497, 1988.

    Google Scholar 

  73. G.B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122, Princeton University Press: Princeton, NJ, 1989.

    Google Scholar 

  74. J.J. Benedetto, “Uncertainty principle inequalities and spectrum estimation,” in Recent Advances in Fourier Analysis and Its Applications, J.S. Byrnes and J.L. Byrnes, eds., Kluwer Academic: Dordrecht, The Netherlands, 1990, pp. 143–182.

    Google Scholar 

  75. H.P. Robertson, “The uncertainty principle,” Phys. Rev., vol. 34., pp. 163–164, 1929.

    Google Scholar 

  76. W. Heisenberg, Physikalische Prinzipien der Quantenmechanik, BI-Wissenschaftsverlag: Mannheim, Germany, 1958.

    Google Scholar 

  77. R. Balian, “Un principe d'incertitude fort en théorie du signal ou en mécanique quantique,” C.R. Acad. Sci. Paris, vol. 292, pp. 1357–1362, 1981.

    Google Scholar 

  78. D.L. Donoho and P.B. Stark, “Uncertainty principles and signal recovery,” SIAM J. Appl. Math., vol. 49, pp. 906–931, 1989.

    Google Scholar 

  79. R. Wilson and G.H. Granlund, “The uncertainty principle in image processing,” IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI- 6, pp. 758–767, 1984.

    Google Scholar 

  80. J.B.M. Uffink and J. Hilgevoord, “New bounds for the uncertainty principle,” Phys. Lett. A, vol. 105, pp. 176–178, 1984.

    Google Scholar 

  81. I.E. Segal, “Transforms for operators and symplectic automorphisms over locally compact abelian groups,” Math. Scand., vol. 13, pp. 31–43, 1963.

    Google Scholar 

  82. A. Weil, “Sur certains groupes d'opérateurs unitaires,” Acta Math., vol. 111, pp. 143–211, 1964; also in Collected Papers, vol. III, Springer-Verlag: New York, 1980, pp. 1–69.

    Google Scholar 

  83. R.S. Strichartz, “Sub-Riemannian geometry,” J. Differential Geom., vol. 24, pp. 221–263, 1986.

    Google Scholar 

  84. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng., vol. 93, pp. 429–457, 1946.

    Google Scholar 

  85. C.C. Moore and J.A. Wolf, “Square integrable representations of nilpotent groups,” Trans. Am. Math. Soc., vol. 185, pp. 445–462, 1973.

    Google Scholar 

  86. J. Phillips, “A note on square-integrable representations,” J. Funct. Anal., vol. 20, pp. 83–92, 1975.

    Google Scholar 

  87. D.S. Shucker, “Square integrable representations of unimodular groups,” Proc. Am. Math. Soc., vol. 89, pp. 169–172, 1983.

    Google Scholar 

  88. H. Moscovici, “Coherent state representations of nilpotent Lie groups,” Commun. Math. Phys., vol. 54, pp. 63–68, 1977.

    Google Scholar 

  89. A. Grossmann and J. Morlet, “Decomposition of functions into wavelets of constant shape, and related transforms, in Mathematics and Physics: Lectures on Recent Results, vol. 11, L. Streit, ed., World Scientific: Singapore, 1985, pp. 135–165, 1985.

    Google Scholar 

  90. D.C. Munson, J.D. O'Brien, and W.K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE, vol. 71, pp. 917–925, 1983.

    Google Scholar 

  91. W. Schempp, “The oscillator representation of the metaplectic group applied to quantum electronics and computerized tomography,” in Stochastic Processes in Physics and Engineering, S. Albeverio, Ph. Blanchard, M. Hazewinkel, and L. Streit, eds., D. Reidel: Dordrecht, The Netherlands, 1988, pp. 305–344.

    Google Scholar 

  92. M.J. Hayford, “Holographic optical design using CODE V,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. Soc. Photo.-Opt. Instrum. Eng., vol. 883, pp. 2–7, 1988.

  93. W. Schempp, “Group theoretical methods in approximation theory, elementary number theory, and computational signal geometry,” in Approximation Theory V, C.K. Chui, L.L. Schumaker, and J.D. Ward, eds., Academic Press: Boston, 1986, pp. 129–171.

    Google Scholar 

  94. N. Streibl, “Beam shaping with optical array generators,” J. Modern Opt., vol. 36, pp. 1559–1573, 1989.

    Google Scholar 

  95. W.B. Veldkamp, J.R. Leger, and G.J. Swanson, “Coherent summation of laser beams using binary phase gratings,” Opt. Lett., vol. 11, pp. 303–305, 1986.

    Google Scholar 

  96. W. Schempp, “Holographic grids,” in Visual Communications and Image Processing '88, T.R. Hsing, ed., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1001, pp. 116–120, 1988.

  97. I. Gertner and R. Tolimieri, “The group theoretic approach to image representation,” J. Vis. Commun. Image Rep., vol. 1, pp. 67–82, 1990.

    Google Scholar 

  98. W. Schempp, “Gruppentheoretische Aspekte der Signalübertragung und der kardinalen Interpolationssplines I,” Math. Meth. Appl. Sci., vol. 5, pp. 195–215, 1983.

    Google Scholar 

  99. A. Aspect, “Proposed experiment to test the nonsepatability of quantum mechanics,” Phys. Rev. D, vol. 14, pp. 1944–1951, 1976; also in Quantum Theory and Measurement, J.A. Wheeler and W.H. Zurek, eds., Princeton University Press: Princeton, NJ, 1983, pp. 435–442.

    Google Scholar 

  100. A. Aspect, “Le théorème de Bell: vingt cinq ans après,” presented at 51 ième Rencontre entre Physiciens Théoriciens et Mathématiciens, Institut de Recherche Mathématique Advancée, Université Louis Pasteur, Strasbourg, 1990.

  101. A. Aspect, P. Grangier, “Experiments on Einstein-Podolsky-Rosen-type correlations with pairs of visible photons,” in Quantum Concepts in Space and Time, R. Penrose and C.J. Isham, eds., Clarendon Press: Oxford, England, 1986, pp. 1–15.

    Google Scholar 

  102. A. Aspect, P. Grangier and G. Rogers, “Experimental tests of realistic local theories via Bell's theorem,” Phys. Rev. Lett., vol. 47, pp. 460–463, 1981.

    Google Scholar 

  103. R.L. Pfleegor and L. Mandel, “Interference effects at the single photon level,” Phys. Lett. A, vol. 24, pp. 766–767, 1967.

    Google Scholar 

  104. R. Nobili, “Schrödinger wave holography in brain cortex,” Phys. Rev. A, vol. 32, pp. 3618–3626, 1985.

    Google Scholar 

  105. W. Schempp, “Elementary holograms and 3-orbifolds,” C.R. Math. Rep. Acad. Sci. Canada, vol. 10, pp. 155–160, 1988.

    Google Scholar 

  106. J. Uozumi, H. Kimura, and T. Asakura, “Optical diffraction by regular and random Koch fractals,” in Optics in Complex Systems, F. Lanzl, H.-J. Preuss, and G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1319. pp. 11–12, 1990.

  107. J. Uozumi, H. Kimura, and T. Asakura, “Fraunhofer diffraction by Koch fractals,” J. Modern Opt., vol. 37, pp. 1011–1031, 1990.

    Google Scholar 

  108. C.T. Stansberg, “Surface roughness measurements by means of polychromatic speckle patterns,” Appl. Opt., vol. 18, pp. 4051–4060, 1979.

    Google Scholar 

  109. C.T. Stansberg, “On the first-order probability density function of integrated laser speckle,” Opt. Acta, vol. 28, pp. 917–932, 1981.

    Google Scholar 

  110. J.C. Eccles, “New light on the mind-brain problem: how mental events could influence neural events,” in Complex Systems: Operational Approaches, H. Haken, ed., Springer-Verlag: Berlin, 1985, pp. 81–106.

    Google Scholar 

  111. J.G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. A, vol. 2, pp. 1160–1169, 1985.

    Google Scholar 

  112. J.C. Eccles, Evolution of the Brain: Creation of the Self, Routledge: London, 1986.

    Google Scholar 

  113. K. Wilber, Das holographische Weltbild, Scherz Verlag: Bern, 1986.

    Google Scholar 

  114. W. Schempp, “The holographic transform,” in Numerical Methods and Approximation Theory III, G.V. Milovanovič, ed., University of Niš, Niš, Yugoslavia, 1988, pp. 67–91.

    Google Scholar 

  115. D. Schreier, Synthetische Holografie, Fachbuchverlag: Leipzig, Germany, 1984.

    Google Scholar 

  116. D.I. Feinstein, “The hexagonal resistive network and the circular approximation,” California Institute of Technology, Pasadena, CA, Caltech Comput. Sci. Tech. Rep. Caltech-CS-TR-88–7, 1988.

    Google Scholar 

  117. J.G. Daugman, “Two-dimensional spectral analysis of cortical receptive field profiles,” Vis. Res., vol. 20, pp. 847–856, 1980.

    Google Scholar 

  118. J.G. Daugman, “Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression,” IEEE Trans. Acoust., Speech, and Signal Process., vol. ASSP-36, pp. 1169–1179, 1988.

    Google Scholar 

  119. J.G. Daugman, “Relaxation neural network for complete discrete 2-D Gabor transforms,” in Visual Communications and Image Processing '88, T.R. Hsing, ed., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1001, pp. 1048–1061, 1988.

  120. J.G. Daugman, “Entropy reduction and decorrelation in visual cortex by oriented neural receptive fields,” IEEE Trans. Biomed. Eng., vol. BME-36, pp. 107–114, 1989.

    Google Scholar 

  121. J.E. Dowling, The Retina: An Approachable Part of the Brain, Belknap Press of Harvard University Press: Cambridge, MA, 1987.

    Google Scholar 

  122. S. Marčelja, “Mathematical description of the responses of simple cortical cells,” J. Opt. Soc. Am., vol. 70, pp. 1297–1300, 1980.

    Google Scholar 

  123. J.P. Jones and L.A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cat striate cortex,” J. Neurophysiol., vol. 58, pp. 1187–1211, 1987.

    Google Scholar 

  124. J.P. Jones and L.A. Palmer, “An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex,” J. Neurophysiol., vol. 58, pp. 1233–1258, 1987.

    Google Scholar 

  125. A. Cunha and E.N. Leith, “One-way phase conjugation with partially coherent light and super-resolution,” Opt. Lett., vol. 13, pp. 1105–1107, 1988.

    Google Scholar 

  126. A. Cunha and E.N. Leith, “Generalized one-way phaseconjugation systems, J. Opt. Soc. Am. B, vol. 6, pp. 1803–1812, 1989.

    Google Scholar 

  127. E.N. Leith and D.K. Angell, “Generalization of some incoherent spatial filtering techniques,” Appl. Opt., vol.25, pp. 499–502, 1986.

    Google Scholar 

  128. E.N. Leith and A. Cunha, “Holographic methods for imaging through an inhomogeneity,” Opt. Eng., vol. 28, pp. 574–579, 1989.

    Google Scholar 

  129. E.N. Leith and A.L. Inglis, “Synthetic antenna data processing by wavefront reconstruction,” Appl. Opt., vol. 7, pp. 539–544, 1968.

    Google Scholar 

  130. E.N. Leith and C.-P. Kuei, “Interferometric method for imaging through inhomogeneities,” Opt. Lett., vol. 12, pp. 149–151, 1987.

    Google Scholar 

  131. E.J. Farrell, “An introduction to matching polynomials,” J. Combin. Theory Ser. B, vol. 27, pp. 75–86, 1979.

    Google Scholar 

  132. C.D. Godsil and I. Gutman, “On the theory of the matching polynomial,” J. Graph Theory, vol. 5, pp. 137–144, 1981.

    Google Scholar 

  133. J.C. Pearson, L.H. Finkel, and G.M. Edelman, “Plasticity in the organization of adult cerebral cortical maps: a computer simulation based on neural group selection,” J. Neurosci., vol. 7, pp. 4209–4223, 1987.

    Google Scholar 

  134. B.H. Soffer, G.J. Dunning, Y. Owechko, and E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” Opt. Lett., vol. 11, pp. 118–120, 1986.

    Google Scholar 

  135. B.H. Soffer, Y. Owechko, and G.J. Dunning, “A photorefractive optical neural network,” in Optics in Complex Systems, F. Lanzl, H.-J. Preuss, and G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1319, pp. 196–197, 1990.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schempp, W. Quantum holography and neurocomputer architectures. J Math Imaging Vis 2, 279–326 (1992). https://doi.org/10.1007/BF00121876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121876

Key words

Navigation