Skip to main content
Log in

The use of gas plasma treatment to improve the cell-substrate properties of a skin substitute made of poly(ether)/poly(ester) copolymers

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

The objective of this study was to improve the cell-substrate interactions between skin cells and a biodegradable elastomeric matrix, part of a cell-seeded skin substitute for the treatment of large-scale deep dermal skin defects (i.e. burn wounds). Polyactive, a synthetic biodegradable elastomeric copolymer, was used as the constituent of the bilayered matrix. It consists of a dense toplayer seeded with epidermal keratinocytes and a macroporus underlayer, which may be seeded with dermal fibroblasts. Although former studies demonstrated the suitability of the copolymer as a substrate for these skin-derived cell types, we aimed to improve the bilayered matrix' seeding efficiency. Using radio frequency glow discharge (RFGD) pretreatment significantly improved the adherence and growth of SVK14 epithelial cells seeded on the dense copolymeric toplayers and on non-tissue grade plastics, approximating tissue culture polystyrene values. With scanning electron microscopy (SEM), early epithelial cell-substrate interactions were investigated. Seeding efficiency and growth of dermal fibroblasts into the porous underlayers was improved as was visualized with the SEM and confocal scanning laser microscopy. It is concluded that RFGD pretreatment is a cost-effective measurement for improving cell-substrate properties of the investigated copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. C. TEEPE, M. PONEC and R. W. KREIS. Lancet (1986) 385.

  2. I. V. YANNAS, Angew. Chem. Int. Ed. Engl. 29 (1990) 20.

    Google Scholar 

  3. E. BELL, H. P. EHRLICH, S. SHER, C. MERRILL, R. SARBER, B. HULL, T. NAKATSUJI, D. B. S. CHURCH and D. J. BUTTLE, Plastic Reconstruct. Surg. 67 (1981) 386.

    Google Scholar 

  4. S. T. BOYCE, J. CHRISTIANSON and J. F. HANSBROUGH, JBMR 22 (1988) 939.

    Google Scholar 

  5. G. J. BEUMER, C. A.Van BLITTERSWIJK, D. BAKKER and M. PONEC, Clin. Mater. 14 (1993) 21.

    Google Scholar 

  6. J. J. GROTE, D. BAKKER, S. C. HESSELING, C. A.Van BLITTERSWIJK, Am. J. Otology 12 (1991) 329.

    Google Scholar 

  7. A. S. CHAWLA in “Polymeric Biomaterials”, edited by PISKIN and HOFFMAN (Nyhoff, Dordrecht, Holland, 1986) p. 221.

    Google Scholar 

  8. C. A. VAN BLITTERSWIJK, Tissue-Mater. Interface (1991) 296.

  9. J. TAYLOR-PAPADIMITRIOU, P. PURKIS, E. B. LANE, I. A. MCKAY and S. E. CHANG, Cell Diff. 11 (1982) 169.

    Google Scholar 

  10. J. G. RHEINWAD and H. GREEN, The Cell 6 (1975) 331.

    Google Scholar 

  11. G. J. BEUMER, C. A.Van BLITTERSWIJK, D. BAKKER and M. PONEC, Biomaterials, 14 (8) (1993) 598.

    Google Scholar 

  12. J. A. JANSEN, J. P. C. M.Van Der WAERDEN and K.De GROOT, Biomaterials, 10 (1989) 604.

    Google Scholar 

  13. A. S. G. CURTIS, J. V. FORRESTER, C. MCINNES and F. LAWRIE, J. Cell. Biol. 97 (1983) 1500.

    Google Scholar 

  14. K. D. THOMAS, B. J. TIGHE and M. J. LYDON, in Advances in Biomaterials 6”, edited by Christel, Meunier and Lee Elsevier, Amsterdam, pp. 379–83.

  15. W. S. RAMSEY, W. HERTL, E. D. NOWLAN and N. J. BINKOWSKI, In vitro 20 (1984) 802.

    Google Scholar 

  16. J. M. SCHAKENRAAD, H. J. BUSSCHER, C. R. H. WILDEVUUR, J. ARENDS

  17. A. S. C. CURTIS, J. V. FORRESTER, C. MCINNNES and F. LAWRIE, J. Cell Biol. 97 (1983) 1500.

    Google Scholar 

  18. P.Van Der VALK, A. J. W.Van PELT, H. J. BUSSCHER, H. P.De JONG, R. H. WILDEVUUR and J. ARENDS, JBMR 17 (1983) 807.

    Google Scholar 

  19. R. M. BROWN and C. A. MIDDLETON, J. Cell Sci. 88 (1987) 521.

    Google Scholar 

  20. W. R. GOMBOTZ and A. S. HOFFMAN. CRC Crit. Rev. Biocompat. 4 (1987) 1.

    Google Scholar 

  21. A. S. HOFFMAN, J. Appl. Polym. Sci. Appl. Polym. Symp. 42 (1988) 251.

    Google Scholar 

  22. J. M. SCHAKENRAAD, Thesis, Groningen, The Netherlands (1987).

  23. G. G. GALLICO, New Engl. J. Med. 311 (1984) 448.

    Google Scholar 

  24. A. E. FREEMAN, H. J. IGEL, N. D. WALDMAN and A. M. LOSIKOFF, Arch. Surg. 108 (1974) 721.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beumer, G.J., Van Blitterswijk, C.A. & Ponec, M. The use of gas plasma treatment to improve the cell-substrate properties of a skin substitute made of poly(ether)/poly(ester) copolymers. J Mater Sci: Mater Med 5, 1–6 (1994). https://doi.org/10.1007/BF00121145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121145

Keywords

Navigation