Skip to main content
Log in

Large-eddy simulations of the effects of hilly terrain on the convective boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Large-eddy simulations of the convective boundary layer are compared over hilly versus flat surfaces. Moderate values for the height and horizontal spacing of the hills were selected. Thermally-direct hill-valley circulations are induced by the uneven terrain, accounting for a significant fraction of the resolved energy in the boundary-layer eddies. The probability of upward eddy motion reaches up to 70% over the hilltops and down to 15% over the valleys. Above-average values of both subgrid scale turbulent kinetic energy and upward eddy heat transport are found above the higher terrain. Horizontal spectra of vertical motion are strongly biased toward the horizontal scales of the terrain. Vertical profiles of atmospheric variables obtained by horizontal averaging, however, exhibit no significant differences between hilly and flat terrain simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28 181–189.

    Google Scholar 

  • Carras, J. N. and Williams, D. J.: 1981, ‘The Long-Range Dispersion of a Plume from an Isolated Point Source’, Atmos. Environ. 15 2205–2217.

    Google Scholar 

  • Deardorff, J. W.: 1974: ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7 81–106.

    Google Scholar 

  • Deardorff, J. W.: 1980, ‘Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional Model’, Boundary-Layer Meteorol. 18 495–527.

    Google Scholar 

  • Gal-Chen, T. and Somerville, R. C. J.: 1975, ‘On the Use of a Coordinate Transformation for the Solution of the Navier-Stokes Equation’, J. Comp. Physics 17 209–228.

    Google Scholar 

  • Grant, A. L. M. and Mason, P. J.: 1990, ‘Observations of Boundary-Layer Structure over Complex Terrain’, Quart. J. R. Meteorol. Soc. 11 159–186.

    Google Scholar 

  • Hadfield, M. G.: 1988, The Response of the Atmospheric Convective Boundary Layer to Surface Inhomogeneities, Colorado State University, Atmospheric Science Paper No. 433, Fort Collins, CO.

    Google Scholar 

  • Hadfield, M. G., Cotton, W. R., and Pielke, R. A.: 1991a, ‘Lare-Eddy Simulations of a Small-Scale, Thermally-Forced Circulation in the Convective Boundary Layer’, Boundary-Layer Meteorol. 57 79–114.

    Google Scholar 

  • Hadfield, M. G., Cotton, W. R., and Pielke, R. A.: 1991b, ‘Thermally Forced Circulations in the Convective Boundary Layer — The Effect of Changes in Wavelength and Wind Speed ’, Boundary-Layer Meteorol. (in press)

  • Han, Y.-J., Ueyoshi, K., and Deardorff, J. W.: 1982: ‘Numerical Study of Terrain-Induced Mesoscale Motions in a Mixed Layer’, J. Atmos. Sci. 39 2464–2476.

    Google Scholar 

  • Kaimal, J. C., Eversole, R. A., Lenschow, D. H., Stankhov, B. B., Kahn, P. H., and Businger, J. A.: 1982: ‘Spectral Characteristics of the Convective Boundary Layer Over Uneven Terrain’, J. Atmos. Sci. 39 1098–1114.

    Google Scholar 

  • King, J. C.: 1990, The Atmospheric Boundary Layer over an Antarctic Ice Shelf, Preprint, Ninth Symposium on Turbulence and Diffusion, Amer. Meteor. Soc., Boston, pp. 334–336.

    Google Scholar 

  • Krettenauer, K. and Schumann, U.: 1989, ‘Direct Numerical Simulation of Thermal Convection over a Wavy Surface’, Meteorol. Atmos. Phys. 41 165–179.

    Google Scholar 

  • Kustas, W. P. and Brutsaert, W.: 1986, ‘Wind Profile Constants in a Neutral Atmospheric Boundary Layer over Complex Terrain’, Boundary-Layer Meteorol. 34 33–54.

    Google Scholar 

  • Moeng, C.-H., Wyngaard, J. C.: 1984, ‘Statistics of Conservative Scalars in the Convective Boundary Layer’, J. Atmos. Sci. 41 2052–2062.

    Google Scholar 

  • Moeng, C.-H., and Wyngaard, J. C.: 1988, ‘Spectral Analysis of Large-Eddy Simulations of the Convective Boundary Layer’, J. Atmos. Sci. 45 3573–3587.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Glendening, J. W.: 1989, ‘Mesoscale Dynamics of the Depth of a Horizontally Non-Homogeneous, Well-Mixed Boundary Layer’, Beitr. Phys. Atmosph. 62 275–288.

    Google Scholar 

  • Panofsky, H. A., Larko, D., Lipschutz, R., Stone, G., Bradley, E. F., Bowen, A. J., and Højstrup, J.: 1982, ‘Spectra of Velocity Components over Complex Terrain’, Quart. J. R. Meteorol. Soc. 108 215–230.

    Google Scholar 

  • Reiter, E. R.: 1969, ‘Mean and Eddy Motions in the Atmosphere’, Mon. Wea. Rev. 97 200–204.

    Google Scholar 

  • Schmidt, H. and Schumann, U.: 1989, ‘Coherent Structure of the Convective Boundary Layer Derived from Large-Eddy Simulations’, J. Fluid Mech. 200 511–562.

    Google Scholar 

  • Schumann, U.: 1990, ‘Large-Eddy Simulation of the Up-Slope Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 116 637–670.

    Google Scholar 

  • Shao, Y. and Hacker, J. M.: 1990, ‘Local Similarity Relationships in a Horizontally Inhomogeneous Boundary Layer’, Boundary-Layer Meteorol. 52 17–40.

    Google Scholar 

  • Young, G. S.: 1988, ‘‘Turbulence Structure of the Convective Boundary Layer’, Part II: Phoenix 78 Aircraft Observations of Thermals and their Environment’, J. Atmos. Sci. 45 727–735.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walko, R.L., Cotton, W.R. & Pielke, R.A. Large-eddy simulations of the effects of hilly terrain on the convective boundary layer. Boundary-Layer Meteorol 58, 133–150 (1992). https://doi.org/10.1007/BF00120755

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120755

Keywords

Navigation