Skip to main content
Log in

On two-layer models and the similarity functions for the PBL

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

An operational Planetary Boundary Layer model which employs similarity principles and two-layer patching to provide state-of-the-art parameterization for the PBL flow is used to study the popularly used similarity functions, A and B. The expected trends with stratification are shown. The effects of baroclinicity, secondary flow, humidity, latitude, surface roughness variation and choice of characteristic height scale are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arya, S. P. S.: 1975, ‘Geostrophic Drag and Heat Transfer Relations for the Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 101, 147–161.

    Google Scholar 

  • Arya, S. P. S. and Wyngaard, J. C.: 1975, ‘Effect of Baroclinicity on Wind Profiles and the Geostrophic Drag Law for the Convective Planetary Boundary Layer’, J. Atmos. Sci. 32, 767–778.

    Google Scholar 

  • Boussinesq, J.: 1877, ‘Theory of Turbulent Flow’, Mem. Pre. par. div. Ser. XXIII, Paris.

  • Bridgeman, P.: 1931, Dimensional Analysis, New Haven, Yale University Press, 113 pp.

    Google Scholar 

  • Brown, R. A.: 1970, ‘A Secondary Flow Model for the Planetary Boundary Layer’, J. Atmos. Sci. 27, 742–757.

    Google Scholar 

  • Brown, R. A.: 1974a, Analytic Methods in Planetary Boundary Layer Modelling, Halstead Press, J. Wiley and Sons, New York, 148 pp.

    Google Scholar 

  • Brown, R. A.: 1974b, ‘Matching Classical Boundary Layer Equations Toward a Geostrophic Drag Coefficient’, Boundary-Layer Meteorol. 7, 489–500.

    Google Scholar 

  • Brown, R. A.: 1978, ‘Similarity Parameters from First-Order Closure and Data’, Boundary-Layer Meteorol. 14, 381–396.

    Google Scholar 

  • Brown, R. A.: 1980, ‘Longitudinal Instabilities and Secondary Flows in the Planetary Boundary Layer: A Review’, Rev. of Geophys. and Space Physics 18(3), 683–697.

    Google Scholar 

  • Brown, R. A.: 1981, ‘Modelling the Geostrophic Drag Coefficient for AIDJEX: The Model and the Data’, J. Geophys. Res. 86(C3), 1989–1994.

    Google Scholar 

  • Brown, R. A. and Liu, W. T.: 1982, ‘An Operational Large Scale Marine PBL Model’, J. Applied Meteorol. 21(3), 261–269.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Clarke, R. H.: 1970, ‘Observational Studies in the Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 96, 91–114.

    Google Scholar 

  • Clarke, R. H. and Hess, G. D.: 1974, ‘Geostrophic Departure and the Functions A and B of Rossby-Number Similarity Theory’, Boundary-Layer Meteorol. 7, 267–287.

    Google Scholar 

  • Ekman, V. W.: 1905, ‘On the Influence of the Earth's Rotation on Ocean Currents’, Arkiv. Mat. Astr. o Fysik 2(11), 53 pp. (in English).

  • Ellison, T. L.: 1956, ‘Atmospheric Turbulence’, Surveys in Mech. Cambridge Univ. Press, 400–430.

  • Faller, A. J.: 1965, ‘Large Eddies in the ABL and Their Possible Role in the Formation of Cloud Rows’, J. Atmos. Sci. 23, 176–184.

    Google Scholar 

  • Gill, A. E.: 1968, ‘Similarity Theory and Geostrophic Adjustment’, Quart. J. Roy. Meteorol. Soc. 74, 581–585.

    Google Scholar 

  • Hess, G. D.: 1973, ‘On Rossby-number Similarity Theory for a Baroclinic Boundary Layer’, J. Atmos. Sci. 30, 1722–1723.

    Google Scholar 

  • Kazanski, A. B. and Monin, A. S.: 1961, ‘On the Dynamical Interaction Between the Atmosphere and the Earth's Surface’, Bull. Acad. Sci. U.S.S.R. Ser. Geophys. 5, 786–788.

    Google Scholar 

  • Kondo, J.: 1975, ‘Air-Sea Bulk Transfer Coefficients in Diabatic Conditions’, Boundary-Layer Meteorol. 9, 91–112.

    Google Scholar 

  • Kostadinov, L. and Dzholov, G.: 1977, ‘The Universal Functions in the Resistance and Heat Exchange Laws for the Ekman Boundary Layer’, Izvestiya, Atmos. and Ocean. Phys. 13(9), 673–675.

    Google Scholar 

  • Krishna, K.: 1981, ‘A Two-Layer First-Order Closure Model for the Study of the Baroclinic Atmospheric Boundary Layer’, J. Atmos. Sci. 38(7), 1401–1417.

    Google Scholar 

  • Lettau, H. H.: 1959, ‘Wind Profiles, Surface Stress and Geostrophic Drag Coefficients in the Atmospheric Surface Layer’, Adv. Geophys. 6, London, Academic Press, 241–257.

  • Lilly, D. K.: 1966, ‘On the Stability of Ekman Boundary Flow’, J. Atmos. Sci. 23, 481–494.

    Google Scholar 

  • Melgarejo, J. W. and Deardorff, J. W.: 1974, ‘Stability Functions for the Boundary Layer Resistance Laws Based Upon Observed Boundary Layer Height’, J. Atmos. Sci. 31, 1324–1333.

    Google Scholar 

  • Melgarejo, J. W. and Deardorff, J. W.: 1975, ‘Revision to Stability Functions for the Boundary Layer Resistance Laws Based upon Observed Boundary Layer Height’, J. Atmos. Sci. 32, 837–839.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1981, ‘The Steady-State Height and Resistance Laws of the Nocturnal Boundary Layer: Theory Compared with Cabauw Observations’, Boundary-Layer Meteorol. 20, 3–17.

    Google Scholar 

  • Prandtl, L.: 1925, Über die Ausgebildste Turbulence. ZAMM 5, 136 and Proc. Inst. Congress Appl. Mech., Zurich, 1926.

  • Rossby, C. G.: 1932, ‘A Generalization of the Theory of the Mixing Length with Applications to Atmospheric and Oceanic Turbulence’, MIT Meteor, papers I, 4–36.

  • Rossby, C. G. and Montgomery, R.: 1935, ‘The Layers of Frictional Influence in Wind and Ocean Currents’, MIT paper 3, 3–101.

  • Sedov, A.: 1951, Similarity and Dimensional Methods in Mechanics. Academic Press, New York.

    Google Scholar 

  • Smith, S. D.: 1980, ‘Wind Stress and Heat Flux over the Ocean in Gale Force Winds’, J. Phys. Ocean. 10, 709–726.

    Google Scholar 

  • Stuart, J. T.: 1958, ‘On the Non-Linear Mechanics of Hydrodynamic Stability’, J. Fluid Mech. 4, 1.

    Google Scholar 

  • von Karman, T.: 1930, The Analogy Between Fluid Friction and Heat Transfer, Proc. 3rd Int'l. Congress of Appl. Mech., Stockholm, pt. I, 85. (NACA TM 611, 1931.)

  • Wyngaard, J. C.: 1975, ‘Modeling the PBL-Extension to the Stable Case’, Boundary-Layer Meteorol. 9, 441–460.

    Google Scholar 

  • Yamada, T.: 1976, ‘On the Similarity Function A, B, and C of the Planetary Boundary Layer’, J. Atmos. Sci. 33, 781–793.

    Google Scholar 

  • Zilitinkevich, S. S.: 1975, ‘Resistance Laws and Prediction Equations for the Depth of the PBL’, J. Atmos. Sci. 32, 741–752.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, R.A. On two-layer models and the similarity functions for the PBL. Boundary-Layer Meteorol 24, 451–463 (1982). https://doi.org/10.1007/BF00120733

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120733

Keywords

Navigation