Skip to main content
Log in

Liquid phase sintering of hydroxyapatite by phosphate and silicate glass additions: structure and properties of the composites

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Phosphate- and silicate-based glasses were added to hydroxyapatite in order to improve its mechanical properties and to fabricate composites with different degrees of bioactivity. A strong chemical bonding was obtained between hydroxyapatite and the phosphate-based glasses leading to samples approaching theoretical density, according to density measurements and scanning electron microscopy. Bioglass® additions led to the formation of a complex calcium phosphate silicate which hampered the reinforcement process. The fracture toughness of the hydroxyapatite-glass composites was shown to be within the 1.1–1.2 MPam1/2 range, which is double that determined for sintered hydroxyapatite. A 2 μm thick apatite layer was observed on the surface of the hydroxyapatite-glass composites after 48 h immersion in a simulated human blood plasma, whereas only a few apatite crystals were detected on sintered hydroxyapatite after 7 days immersion. From the results obtained we anticipate that the composites might show a higher rate of bone bonding, leading to enhanced bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Manabe, M. Shigematsu and S. Kobayashi. in “High tech. ceramics”, edited by P. Vincenzini (Elsevier Science Publishers, Amsterdam, 1987) p. 63.

    Google Scholar 

  2. K. Ono, T. Yamamuro and Y. Kotoura, J. Biomed. Mater. Res. 22 (1988) 869.

    Google Scholar 

  3. T. Kitsugi, T. Yamamuro and T. Kokubo, J. Biomed. Mater. Res. 21 (1987) 1109.

    Google Scholar 

  4. T. Amir, T. Yamamuro and T. Kokubo, Biomaterials 10 (1989) 585.

    Google Scholar 

  5. K. Ono, T. Yamamuro and T. Kokubo. J. Biomed. Mater. Res. 24 (1990) 47.

    Google Scholar 

  6. I. Kangasniemi, K.De Groot and A. Yli-Urpo. J. Mater. Sci. Mat. Med. 2 (1991) 133.

    Google Scholar 

  7. C. P. A. T. Klein, P. Patka, and K.De Groot. J. Biomed. Mater. Res. 25 (1991) 54.

    Google Scholar 

  8. H. Aoki, in “Science and medical applications of hydroxyapatite” (JAAS, 1991).

  9. P. Ducheyne, J. Biomed. Mater. Res. 21 A2 (1987) 219.

    Google Scholar 

  10. H. Oonishi, Biomaterials 12 (1991) 171.

    Google Scholar 

  11. M. Nagase, Y. Abe and E. Udagawa, Biomaterials 13 (1992) 172.

    Google Scholar 

  12. J. Burnie and T. Gilchrist, in “Ceramics in surgery”, edited by P. Vincenzini (Elsevier Science Publishers, Amsterdam, 1983) p. 169.

    Google Scholar 

  13. F. Pernot, P. Baldet and P. Rabischong, in “Ceramics in Surgery”. edited by P. Vincenzini (Elsevier Science Publishers, Amsterdam, 1983) p. 177.

    Google Scholar 

  14. J. Burnie, Ph D Thesis, University of Glasgow (1982).

  15. R. D. Rawlings, P. S. Rogers and P. M. Stokes, in “Ceramics in surgery”, edited by P. Vincenzini (Elsevier Science Publishers, Amsterdam, 1987) p. 73.

    Google Scholar 

  16. W. Holand, W. Vogel and J. Gummel, in “Ceramics in surgery”, edited by P. Vincenzini (Elsevier Science Publishers, Amsterdam, 1983) p. 97.

    Google Scholar 

  17. W. Bonfield, in “Annals of the New York Academy of Science”, edited by P. Ducheyne and J. E. C. Lemmons, 253 (1988) 173.

  18. W. Bonfield, J. C. Behiri and C. Doyle, in “Advances in biomaterials, 5”, edited by P. Ducheyne, G.Van der Perre and A. E. Aubert (Elsevier Science Publishers, Amsterdam 1983) p. 50.

    Google Scholar 

  19. K. Ioku, M. Yoshimura and S. Somiya, Biomaterials 11 (1990) 57.

    Google Scholar 

  20. U. Soltesz, H. Ritcher and R. Keinzler, in “High tech. Ceramics”, edited by P. Vincenzini (Elsevier Science Publishers, Amsterdam, 1987) p. 110.

    Google Scholar 

  21. P. Chantikul, B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 64 (1981) 539.

    Google Scholar 

  22. J. D. Santos, J. C. Knowles, G. W. Hastings and W. Bonfield, UK Patent No 9213774.4, June (1993).

  23. J. D. Santos, J. C. Knowles, R. L. Reis and G. W. Hastings, Biomaterials 15 (1994) 5.

    Google Scholar 

  24. J. D. Santos, J. C. Knowles and G. W. Hastings, in “Bioceramics 5”, edited by T. Yamamuro, T. Kokubo and T. Nakamura (Kobunshi Kankokai, Kyoto, 1992) p. 35.

    Google Scholar 

  25. W. Bonfield and P. K. Datta, J. Biomechanics 9 (1976) 131.

    Google Scholar 

  26. D. T. Reilly and A. H. Burstein, J. Biomechanics 8 (1975) 393.

    Google Scholar 

  27. P. Li, Q. Yang and T. Kokubo, J. Mater. Sci. Mater. Med. 3 (1992) 452.

    Google Scholar 

  28. K. Hyakuna, T. Yamamuro and T. Kokubo, J. Biomed. Mater. Res. 24 (1990).

  29. T. Kokubo, T. Hayashi and T. Yamamuro, in “High tech. ceramics”, edited by P. Vincenzini (Elsevier Science Publishers, Amsterdam, 1987) p. 175.

    Google Scholar 

  30. C. Ohtsuki, T. Kokubo and T. Yamamuro, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 99 (1991) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, J.D., Reis, R.L., Monteiro, F.J. et al. Liquid phase sintering of hydroxyapatite by phosphate and silicate glass additions: structure and properties of the composites. J Mater Sci: Mater Med 6, 348–352 (1995). https://doi.org/10.1007/BF00120303

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120303

Keywords

Navigation