Skip to main content
Log in

Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A surface renewal model that links organized eddy motion to the latent and sensible heat fluxes is tested with eddy correlation measurements carried out in a 13m tall uniform Loblolly pine plantation in Duke Forest, Durham, North Carolina. The surface renewal model is based on the occurance of ramp-like patterns in the scalar concentration measurements. To extract such ramp-like patterns from Eulerian scalar concentration measurements, a newly proposed time-frequency filtering scheme is developed and tested. The time-domain filtering is carried out using compactly-supported orthonormal wavelets in conjunction with the “Universal Wavelet Thresholding” approach of Donoho and Johnstone, while the frequency filtering is carried out by a band-pass sine filter centered around the ramp-occurrence frequency as proposed by other studies. The method was separately tested for heat and water vapour with good agreement between eddy correlation flux measurements and model predictions. The usefulness of the flux-variance method to predict sensible and latent heat fluxes is also considered. Our measurements suggest that the simple flux-variance method reproduces the measured heat and momentum fluxes despite the fact that the variances were measured within the roughness sublayer and not in the surface layer. Central to the predictions of water vapour fluxes using the flux-variance approach is the similarity between heat and water vapour transport by the turbulent air flow. This assumption is also investigated for this uniform forest terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson, J. D., Parlange, M. B., Katul, G. G., Chu, C. R., Stricker, H., and Tyler, S.: 1995, ‘Modeling Sensible Heat Flux from Arid Regions Using a Simple Flux-Variance Method’, Water Resourc. Res. 31, 969–973.

    Google Scholar 

  • Asher, W. E. and Pankow, J. F.: 1991, ‘Prediction of Gas/Water Mass Transport Coefficients by a Surface Renewal Model’, Environ. Sci. Technol. 25, 1294–1300

    Google Scholar 

  • Bergström, H. and Högström, U.: 1989, ‘Turbulent Exchange above a Pine Forest. II: Organized Structures’, Boundary-Layer Meteorol. 49, 231–263.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N.: 1960, Transport Phenomena, John Wiley and Sons, 780 pp.

  • Brodkey, R. S., McKelvey, K. N., Hershey, H. C., and Nychas, S. G.: 1978, ‘Mass Transfer at the Wall as a Result of Coherent Structures in a Turbulently Flowing Liquid’, Int. J. Heat Mass Transfer 21, 593–603.

    Google Scholar 

  • Brutsaert, W.: 1982, Evaporation into the Atmosphere: Theory, History, and Applications, D. Reidel, Dordecht, 299 pp.

    Google Scholar 

  • Bullin, J. A. and Dukler, A. E.: 1972, ‘Random Eddy Models for Surface Renewal: Formulation as a Stochastic Process’, Chem. Engr. Sci. 27, 439–442.

    Google Scholar 

  • Busch, N. E.: 1973, ‘On the Mechanics of Atmospheric Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, Boston, pp. 1–65.

    Google Scholar 

  • Businger, J. A.: 1973, ‘Turbulent Transfer in the Atmospheric Surface Layer’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, Boston, pp. 67–100.

    Google Scholar 

  • Collineau, S. and Brunet, Y.: 1993, ‘Detection of Turbulent Coherent Motions in a Forest Canopy Part I: Wavelet Analysis’, Boundary-Layer Meteorol. 65, 357–379.

    Google Scholar 

  • Cooper, D. I., Eichinger, W. E., Hof, D. E., Seville-Jones, D., Quick, R. C., and Tiee, J.: 1994, ‘Observations of Coherent Structures from a Scanning Lidar over an Irrigated Orchard’, Agric. Forest. Meteorol. 67, 239–252.

    Google Scholar 

  • Cussler, E. L.: 1984, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge, 525 pp.

    Google Scholar 

  • Danckwerts, P. V.: 1951, ‘Significance of Liquid-Film Coefficients in Gas Absorption’, Indust. Eng. Chem. 43, 1460–1467.

    Google Scholar 

  • Daubechies, I.: 1992, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 357 pp.

    Google Scholar 

  • Daubechies, I.: 1988, ‘Orthonormal Bases of Compactly Supported Wavelets’, Comm. Pure Appl. Math. 41, 909–996.

    Google Scholar 

  • Davies, J. T.: 1972, Turbulence Phenomena, Academic Press, 412 pp.

  • de Bruin, H. A. R.: 1994, ‘Analytic Solutions of the Equations Governing the Temperature Fluctuation Method’, Boundary-Layer Meteorol. 68, 427–432.

    Google Scholar 

  • de Bruin, H. A. R., Bink, N. I., and Kroon, L. J. M.: 1991, ‘Fluxes in the Surface Layer under Advective Conditions’, in T. J. Schmugge and J. C. Andre (eds.) Workshop on Land Surface Evaporation, Measurement and Parameterization, Springer-Verlag, New York, pp. 157–169.

    Google Scholar 

  • de Bruin, H. A. R., Kohsiek, W., and Van Den Hurk, B. J. J. M.: 1993, ‘A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water Vapour using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities’, Boundary-Layer Meteorol. 63, 231–257.

    Google Scholar 

  • Donoho, D. and Johnstone, I.: 1994, ‘Ideal Spatial Adaptation by Wavelet Shrinkage’, Biometrika 81, 425–455.

    Google Scholar 

  • Eichinger, W. E., Cooper, D. I., Holtkamp, D. B., Karl, R. R., Quick, C. R., Dugas, W., and Hipps, L.: 1992, ‘Spatial Variability of Water Vapour Turbulent Transfer within the Boundary Layer’, Boundary-Layer Meteorol. 61, 389–405.

    Google Scholar 

  • Eichinger, W. E., Cooper, D. I., Parlange, M. B., and Katul, G. G.: 1993, ‘The Application of a Scanning, Water Raman-Lidar as a Probe of the Atmospheric Boundary Layer’, IEEE Transactions on Geoscience and Remote Sensing 31, 70–79.

    Google Scholar 

  • Ellsworth, D. S., Oren, R., Huang, Ce, Phillips, N., and Hendrey, G. R.: 1995, ‘Leaf and Canopy Responses to Elevated CO2 in a Pine Forest under Free-Air CO2 Enrichment’, Oecologia 104, 139–146.

    Google Scholar 

  • Frisch, A. S.: 1970, A Study of Convective Elements in the Atmospheric Boundary Layer, Ph.D. Thesis, University of Washington, 96 pp.

  • Frisch, A. and Businger, J.: 1973, ‘A Study of Convective Elements in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 3, 301–328.

    Google Scholar 

  • Gamage, N. and Hagelberg, C.: 1993, ‘Detection and Analysis of Microfronts and Associated Coherent Events using Localized Transforms’, J. Atmos. Sci. 50, 750–756.

    Google Scholar 

  • Gao, W. and Li, B. L.: 1995, ‘Wavelet Analysis of Coherent Structures at the Atmosphere-forest Interface’, J. Appl. Meteorol. 32, 1717–1725.

    Google Scholar 

  • Gao, W., Shaw, R. H., and Paw U, K. T.: 1989, ‘Observations of Organized Structure in Turbulent Flow within a Forest Canopy’, Boundary-Layer Meteorol. 47, 349–377.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, 316 pp.

  • Harriott, P.: 1962, ‘A Random Eddy Modification of the Penetration Theory’, Chem. Engr. Sci. 17, 149–154.

    Google Scholar 

  • Higbie, R.: 1935, ‘The Rate of Absorption of a Pure Gas into a Still Liquid during Short Periods of Exposure’, Trans. Am. Inst. Chem. Engr. 31, 365–388.

    Google Scholar 

  • Hill, R. J.: 1989, ‘Implications of Monin and Obukhov Similarity Theory for Scalar Quantities’, J. Atmos. Sci. 46, 2236–2244.

    Google Scholar 

  • Kader, B. A. and Yaglom, A. M.: 1990, ‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’, J. Fluid Mech. 212, 637–662.

    Google Scholar 

  • Kader, B. A., Yaglom, A. M., and Zubkovskii, S. L.: 1989, ‘Spatial Correlation Functions of Surface-Layer Atmospheric Turbulence in the Neutral Stratification’, Boundary-Layer Meteorol. 47, 233–249.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows, Their Structure and Measurements, Oxford University Press, Oxford, 289 pp.

    Google Scholar 

  • Katul, G. G.: 1994, ‘A Model for Sensible Heat Flux Probability Density Function for Near-Neutral and Slightly-Stable Atmospheric Flows’, Boundary-Layer Meteorol. 71, 1–20.

    Google Scholar 

  • Katul, G. G., Chu, C. R., Parlange, M. B., Albertson, J. D., and Ortenberger, T. A.: 1995b, ‘Low Wavenumber Spectral Characteristics of Velocity and Temperature in the Atmospheric Surface Layer’, J. Geophys. Res. 100, 14,243–14,245.

    Google Scholar 

  • Katul, G. G., Parlange, M. B., Albertson, J. D., and Chu, C. R.: 1995c, ‘Local Isotropy and Anisotropy in the Sheared and Heated Atmospheric Surface Layer’, Boundary-Layer Meteorol. 72, 123–148.

    Google Scholar 

  • Katul, G. G., Parlange, M. B., Albertson, J. D., and Chu, C. R.: 1995d, ‘The Random Sweeping Decorrelation Hypothesis in Stratified Turbulent Flows’, Fluid Dynamics Research 16, 275–295.

    Google Scholar 

  • Katul, G. G. and Vidakovic, B.: 1996, ‘The Partitioning of Attached and Detached Eddy Motion in the Atmospheric Surface Layer using Lorentz Wavelet Filtering’, Boundary-Layer Meteorol. 77, 153–172.

    Google Scholar 

  • Katul, G. G., Goltz, M., Hsieh, C. I., Cheng, Y., Mowery, F., and Sigmon, J.: 1995a, ‘Estimation of Surface Heat and Momentum Fluxes using the Flux-Variance Method above Uniform and Non-Uniform Terrain’, Boundary-Layer Meteorol. 74, 237–260.

    Google Scholar 

  • Katul, G. G. and Parlange, M. B.: 1994, ‘On the Active Role of Temperature in Surface Layer Turbulence’, J. Atmos. Sci. 51, 2181–2195.

    Google Scholar 

  • Katul, G. G., Albertson, J. D., Parlange, M. B., Chu, C. R., and Stricker, H.: 1994a, ‘Conditional Sampling, Bursting, and the Intermittent Structure of Sensible Heat Flux’, J. Geophys. Res. 99, 22,869–22,876.

    Google Scholar 

  • Katul, G. G., Parlange, M. B., and Chu, C. R.: 1994b, ‘Intermittency, Local Isotropy, and Non- Gaussian Statistics in Atmospheric Surface Layer Turbulence’, Phys. Fluids 6, 2480–2492.

    Google Scholar 

  • Katul, G. G., Albertson, J. D., Chu, C. R., and Parlange, M. D.: 1994c, ‘Intermittency in Atmospheric Surface Layer Turbulence: The Orthonormal Wavelet Representation’, in E. Foufoula-Georgiou and P. Kumar (eds.), Wavelets in Geophysics, Academic Press, pp. 81–105.

  • Komori, S., Ueda, H., Ogino, F., and Mizushina, T.: 1982, ‘Turbulent Structure and transport Mechanisms at the Free Surface in an Open Channel Flow’, Int. J. Heat Mass Transfer 25, 513–521.

    Google Scholar 

  • Koppel, L. B., Patel, R. D., and Holmes, J. T.: 1966, ‘Statistical Models for Surface Renewal in Heat and Mass Transfer: Part I’, A.I.Ch.E. Journal 12, 941–946.

    Google Scholar 

  • Kustas, W. P., Blanford, J. H., Stannard, D. I., Daughtry, C. S. T., Nichols, W. D., and Weltz, M. A.: 1994, ‘Local Energy Flux Estimates from Unstable Conditions using Variance Data in Semiarid Rangelands’, Water Resourc. Res. 30, 1351–1361.

    Google Scholar 

  • Lang, A. R. G., McNaughton, K. G., Chen, F., Bradley, E. F., and Ohtaki, E.: 1983, ‘Inequality of Eddy Transfer Coefficients for Vertical Transport of Sensible and Latent Heats during Advective Inversions’, Boundary-Layer Meteorol. 25, 25–41.

    Google Scholar 

  • Lloyd, C. R., Culf, A. D., Dolman, A. J., and Gash, J. H.: 1991, ‘Estimates of Sensible Heat Flux from Observations of Temperature Fluctuations’, Boundary-Layer Meteorol. 57, 311–322.

    Google Scholar 

  • Lu, C. H. and Fitzjaarald, D. R.: 1994, ‘Seasonal and Diurnal Variations of Coherent Structures over a Decidous Forest’, Boundary-Layer Meteorol. 69, 43–69.

    Google Scholar 

  • Lumley, J. and Panofsky, H.: 1964, The Structure of Atmospheric Turbulence, John Wiley and Sons, New York, 239 pp.

    Google Scholar 

  • Mallat, S.: 1989, ‘A Theory for Multiresolution Signal Decomposition: The Wavelet Representation’, IEEE Trans. Pattern Analy. Mach. Intelligence 11, 674–693.

    Google Scholar 

  • McBean, G. A. and Miyake, M.: 1972, ‘Turbulent Transfer Mechanisms in the Atmospheric Surface Layer’, Quart. J. Roy. Meteorol. Soc. 98, 383–398.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, in J. Lumley (ed.), Statistical Fluid Mechanics, MIT Press, 769 pp.

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere’, Tr. Geofiz. Inst. Akad. Nauk. SSSR 151, 163–187.

    Google Scholar 

  • Munro, D. S.: 1985, ‘Internal Consistency of the Bowen Ratio Approach to Flux Estimation over Forested Wetlands’, in B. A. Hutchison and B. B. Hicks (eds.), The Forest-Atmosphere Interactions, D. Reidel Publishing Company, Dordrecht, pp. 395–404.

    Google Scholar 

  • Nason, G. P.: 1994, Wavelet Regression by Cross-Validation, Technical Report, 447, Department of Statistics, Stanford University.

  • Ohtaki, E.: 1985, ‘On the Similarity in Atmospheric Fluctuations of Carbon Dioxide, Water Vapour and Temperature over Vegetated Fields’, Boundary-Layer Meteorol. 2, 25–37.

    Google Scholar 

  • Otnes, R. K. and Enochson, L.: 1972, Digital Time Series Analysis, John Wiley and Sons, New York, 467 pp.

    Google Scholar 

  • Padro, J.: 1993, ‘An Investigation of Flux-Variance Methods and Universal Functions Applied to Three Land-Use Types in Unstable Conditions’, Boundary-Layer Meteorol. 66, 413–425.

    Google Scholar 

  • Panofsky, H. and Dutton, J.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley and Sons, New York, 397 pp.

    Google Scholar 

  • Parlange, M. B. and Brutsaert, W.: 1993, ‘Regional Shear Stress of Broken Forest from Radiosonde Wind Profiles in the Unstable Surface Layer’, Boundary-Layer Meteorol. 64, 355–368.

    Google Scholar 

  • Paw U, K. T., Brunet, Y., Collineau, S., Shaw, R. H., Maitani, T., Qiu, J., and Hipps, L.: 1992, ‘On Coherent Structures in Turbulence above and within Agricultural Plant Canopies’, Agric. Forest Meteorol. 61, 55–68.

    Google Scholar 

  • Paw U, K. T., Qiu, J., Su, H. B., Watanabe, T., and Brunet, Y.: 1995, ‘Surface Renewal Analysis: A New Method to Obtain Scalar Fluxes’, Agric. Forest Meteorol. 74, 119–137.

    Google Scholar 

  • Paw U, K. T. and Meyers, T. P.: 1989, ‘Investigations with a Higher-Order Canopy Turbulence Model into Mean Source-Sink Levels and Bulk Canopy Resistances’, Agric. Forest Meteorol. 47, 259–271.

    Google Scholar 

  • Perlmutter, D. D.: 1961, ‘Surface Renewal Models in Mass Transfer’, Chem. Engr. Sci. 16, 287–296.

    Google Scholar 

  • Press, W. H., Vetterling, W. T., Teukolsky, S. A., and Flannery, B. P.: 1992, Numerical Recipes in Fortran: The Art of Scientific Computing, Cambridge University, Cambridge, 963 pp.

    Google Scholar 

  • Priestley, J. T. and Hill, R. J.: 1985, ‘Measuring High-Frequency Humidity, Temperature and Radio Refractive Index in the Surface Layer’, J. Atmos. and Ocean. Tech. 2, 233–251.

    Google Scholar 

  • Qiu, J., Paw U, K. T., and Shaw, R. H.: 1995, ‘Pseudo-Wavelet Analysis of Turbulence Patterns in Three Vegetation Layers’, Boundary-Layer Meteorol. 72, 177–204.

    Google Scholar 

  • Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1989, ‘Coherent Eddies in Vegetation Canopies’, in Australian Conference on Heat and Mass Transfer, University of Canterbury, May m–12, Australia, pp. 75–90.

    Google Scholar 

  • Raupach, M. R.: 1988, ‘Canopy Transport Processes’, in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in the Natural Environment: Advances and Applications, Springer-Verlag, pp. 95–127.

  • Raupach, M. R., Antonia, R. A., and Rajagopalan, S.: 1991, ‘Rough-Wall Turbulent Boundary Layers’, Appl. Mech. Rev. 44, 1–25.

    Google Scholar 

  • Roth, M. and Oke, T. R.: 1995, ‘Relative Efficiencies of Turbulent Transfer of Heat, Mass, and Momentum over a Patchy Surface’, J. Atmos. Sci. 52, 1863–1874.

    Google Scholar 

  • Ruckenstein, E.: 1963, ‘Some Remarks on Renewal Models’, Chem. Engr. Sci. 8, 233–241.

    Google Scholar 

  • Shaw, R. H., Paw U, K. T., and Gao, W.: 1989, ‘Detection of Temperature Ramps and Flow Structures at a Deciduous Forest Site’, Agric. Forest Meteorol. 47, 123–138.

    Google Scholar 

  • Sorbjan, Z.: 1989, Structure of the Atmospheric Boundary Layer, Prentice Hall, 317 pp.

  • Stanisic, M. M.: 1985, The Mathematical Theory of Turbulence, Springer-Verlag, 429 pp.

  • Street, R. L.: 1979, ‘Turbulent Heat and Mass Transfers across a Rough, Air-Water Interface: A Simple Theory’, Int. J. Heat Mass Transfer 22, 885–899.

    Google Scholar 

  • Stull, R.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Press, Dordrecht, 666 pp.

    Google Scholar 

  • Taylor, G. I.: 1938, ‘The Spectrum of Turbulence’, Proc. Roy. Soc. A CLXIV, 476–490.

    Google Scholar 

  • Tennekes, H. and Lumley, J.: 1972, A First Course in Turbulence, MIT Press, 300 pp.

  • Tillman, J. E.: 1972, ‘The Indirect Determination of Stability, Heat and Momentum Fluxes in the Atmospheric Boundary Layer from Simple Scalar Variables during Dry Unstable Conditions’, J. Appl. Meteorol. 11, 783–792.

    Google Scholar 

  • Warhaft, Z.: 1976, ‘Heat and Moisture Fluxes in the Stratified Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 102, 703–706.

    Google Scholar 

  • Weaver, H. L.: 1990, ‘Temperature and Humidity Flux-Variance Relations Determined by One- Dimensional Eddy Correlations’, Boundary-Layer Meteorol. 53, 77–91.

    Google Scholar 

  • Wesely, M. L.: 1988, ‘Use of Variance Techniques to Measure Dry Air-Surface Exchange Rates’, Boundary-Layer Meteorol. 44, 13–31.

    Google Scholar 

  • Wieringa, J.: 1993, ‘Representative Roughness Parameters for Homogeneous Terrain’, Boundary- Layer Meteorol. 63, 323–363.

    Google Scholar 

  • Wyngaard, J. C., Cote, O. R., and Izumi, Y.: 1971, ‘Local Free Convection, Similarity and the Budgets of Shear Stress and Heat Flux’, J. Atmos. Sci. 28, 1171–1182.

    Google Scholar 

  • Wyngaard, J. C.: 1973, ‘On Surface-Layer Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, Boston, pp. 101–149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katul, G., Hsieh, CI., Oren, R. et al. Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods. Boundary-Layer Meteorol 80, 249–282 (1996). https://doi.org/10.1007/BF00119545

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119545

Keywords

Navigation