Skip to main content
Log in

A one-dimensional simulation of the stratocumulus-capped mixed layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A marine stratocumulus model has been developed which has four major sub-models: (1) a one-dimensional version of the CSU cumulus model, (2) a partially-diagnostic higher-order turbulence model, (3) an atmospheric radiation model for both short-wave and long-wave radiation, and (4) a partial condensation scheme and cloud fractional parameterization.

A set of numerical experiments have been performed to study the interactions among the turbulence, the long-wave radiation, the short-wave radiation, and the sub-grid condensation processes. The results indicate that surface sensible eddy heat flux and not radiative cooling is the major control on the rate of cloud-top entrainment. Cloud-top radiation cooling occurs principally within the upper part of the mixed layer. However, for the stratocumulus with numerous towers penetrated into the capping inversion, most of the long-wave radiation occurs within the capping inversion. It is found that cloud-top radiation cooling is balanced by turbulence transport of sensible heat from cloud-base levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J. C., DeMoor, C., Lacarrere, P., Therry, G., and DuVachat, R.: 1978, ‘Modeling thr 24-hr Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.

    Google Scholar 

  • Banta, R. and Cotton, W. R.: 1980, ‘On Computing Average Cloud-Water Quantities in a Partially-cloudy Region’, J. de Rech. Atmos. 14, 487–492.

    Google Scholar 

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulent Exchange in Neutral Atmosphere’, J. Geophys. Res. 67, 3095–3102.

    Google Scholar 

  • Bougeault, Ph.: 1981, ‘Modeling the Trade-wind Cumulus Boundary Layer. Part I: Testing the Ensemble Cloud Relations Against Numerical Data’, J. Atmos. Sci. 38, 2414–2424.

    Google Scholar 

  • Brost, R. A., Wyngaard, J. C., and Lenschow, D. H.: 1982, ‘Marine Stratocumulus Layers. Part II: Turbulence Budgets’, J. Atmos. Sci. 39, 818–836.

    Google Scholar 

  • Caughey, S. J., Crease, B. A., and Roach, W. T.: 1982, ‘A Field Study of Nocturnal Stratocumulus. Part II: Turbulence Structure and Entrainment’, Quart. J. Roy. Meteorol. Soc. 108, 125–144.

    Google Scholar 

  • Chen, C. and Cotton, W. R.: 1983, ‘ Numerical Experiments with a One-dimensional Higher Order Turbulence Model: Simulations of the Wangara Day 33 Case’, Boundary-Layer Meteorol. (accepted for publication).

  • Cotton, W. R. and Tripoli, G. J.: 1978, ‘Cumulus Convection in Shear Flow Three-dimensional Numerical Experiments’, J. Atmos. Sci. 35, 1503–1521.

    Google Scholar 

  • Deardorff, J. W.: 1980a, ‘Cloud Top Entrainment Instability’, J. Atmos. Sci. 31, 131–147.

    Google Scholar 

  • Deardorff, J. W.: 1980b, ‘Stratocumulus-capped Mixed Layer Derived from a Three-dimensional Model’, Boundary-Layer Meteorol. 18, 495–527.

    Google Scholar 

  • Herman, G. and Goody, R.: 1976, ‘Formation and Persistence of Summertime Arctic Stratus Clouds’, J. Atmos. Sci. 33, 1537–1553.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Klemp, J. B. and Wilhelmson, R. B.: 1978, ‘The Simulation of Three-dimensional Convective Storm Dynamics’, J. Atmos Sci. 35, 1070–1096.

    Google Scholar 

  • Lacis, A. A. and Hansen, J.: 1974, ‘A Parameterization for the Absorption of Solar Radiation in Earth's Atmosphere’, J. Atmos. Sci. 31, 118–133.

    Google Scholar 

  • Lilly, D. K.: 1968, ‘Models of Cloud-topped Mixed Layers under Strong Inversion’, Quart. J. Roy. Meteorol. Soc. 94, 292–309.

    Google Scholar 

  • Manton, M. J. and Cotton, W. R.: 1977, ‘Formulation of Approximate Equations for Modeling Moist Deep Convection on the Mesoscale’, Atmospheric Science Paper No. 266, Dept. of Atmos. Sci., Colorado State University.

  • Mellor, G. L.: 1977, ‘The Gaussian Cloud Model Relations’, J. Atmos. Sci. 34, 356–358.

    Google Scholar 

  • Neumann, G. and Pierson, Jr., W. J.: 1966, Principles of Physical Oceanography, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Noonkester, V. R.: 1979, ‘Coastal Marine Fog in Southern California’, Mon. Wea. Rev. 107, 830–851.

    Google Scholar 

  • Oliver, D. A., Lewellen, W. S., and Williamson, G. G.: 1978, ‘The Interaction Between Turbulent and Radiative Transport in the Development of Fog and Low-level Stratus’, J. Atmos. Sci. 35, 301–316.

    Google Scholar 

  • Orville, H. D. and Kopp, F. J.: 1977, ‘Numerical Simulation of the Life History of a Hailstorm’, J. Atmos. Sci. 34, 1596–1618.

    Google Scholar 

  • Randall, D. A.: 1980, ‘Conditional Instability of the First Kind Upside-down’, J. Atmos. Sci. 37, 125–130.

    Google Scholar 

  • Rodgers, C. D.: 1967, ‘The Use of Emissivity in Atmospheric Radiation Circulations’, Quart. J. Roy. Meteorol. Soc. 93, 43–54.

    Google Scholar 

  • Schubert, W. H., Wakefield, J. S., Steinen, E. J., and Cox, S. K.: 1979, ‘Marine Stratocumulus Convection. Part I: Governing Equations and Horizontally Homogeneous Solutions’, J. Atmos. Sci. 36, 1286–1307.

    Google Scholar 

  • Sommeria, G., and Deardorff, J. W.: 1977, ‘Subgrid-scale Condensation in Models of Nonprecipitating Clouds’, J. Atmos. Sci. 34, 344–355.

    Google Scholar 

  • Stephens, G. L.: 1977, ‘The Transfer of Radiation in Cloudy Atmosphere’, Ph.D. Thesis, Meteorology Dept., University of Melbourne.

  • Stephens, G. L.: 1978, ‘Radiation Profiles in Extended Water Clouds, Part II’, J. Atmos. Sci. 35, 2123–2132.

    Google Scholar 

  • Stephens, G. L. and Webster, P. J.: 1979, ‘Sensitivity of Radiative Forcing to Variable Cloud and Moisture’, J. Atmos. Sci. 36, 1542–1556.

    Google Scholar 

  • Sun, W.-Y. and Ogura, Y.: 1980, ‘Modeling the Evolution of Convective Planetary Boundary Layer’, J. Atmos. Sci. 37, 1558–1572.

    Google Scholar 

  • Tripoli, G. J. and Cotton, W. R.: 1982, ‘ The Colorado State University Three-Dimensional Cloud/Mesoscale Model — 1981. Part I — General Theoretical Framework and Sensitivity Experiments ’, to be published in J. de Rech. Atmos.

  • Yamamoto, G.: 1962, ‘Direct Absorption of Solar Radiation by Atmospheric Water Vapor, Carbon Dioxide and Molecular Oxygen’, J. Atmos. Sci. 19, 182–188.

    Google Scholar 

  • Zeman, O. and Lumley, J.: 1976, ‘Modeling Buoyancy Driven Mixed Layers’, J. Atmos. Sci. 33, 1974–1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Cotton, W.R. A one-dimensional simulation of the stratocumulus-capped mixed layer. Boundary-Layer Meteorol 25, 289–321 (1983). https://doi.org/10.1007/BF00119541

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119541

Keywords

Navigation