Skip to main content
Log in

Nonequilibrium thermodynamics and different axioms of evolution

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Proponents of two axioms of biological evolutionary theory have attempted to find justification by reference to nonequilibrium thermodynamics. One states that biological systems and their evolutionary diversification are physically improbable states and transitions, resulting from a selective process; the other asserts that there is an historically constrained inherent directionality in evolutionary dynamics, independent of natural selection, which exerts a self-organizing influence. The first, the Axiom of Improbability, is shown to be nonhistorical and thus, for a theory of change through time, acausal. Its perception of the improbability of living states is at least partially an artifact of closed system thinking. The second, the Axiom of Historically Determined Inherent Directionality, is supported evidentially and has an explicit historical component. Historically constrained dynamic populations are inherently nonequilibrium systems. It is argued that living, evolving systems, when considered to be historically constrained nonequilibrium systems, do not appear improbable at all. Thus, the two axioms are not compatible. Instead, the Axiom of Improbability is considered to result from an unjustified attempt to extend the contingent proximal actions of natural selection into the area of historical, causal explanations. It is thus denied axiomatic status, and the effects of natural selection are subsumed as an additional level of constraint in an evolutionary theory derived from the Axiom of Historically Determined Inherent Directionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, P.M. (1981). The evolutionary paradigm of dissipative structures. In E. Jantsch, ed., The evolutionary vision, 25–72. Boulder, Colorado: Westview Press.

    Google Scholar 

  2. Ayala, F.J. (1976). Biology as an autonomous science. In M. Grene and E. Mendelsohn, eds., Topics in the philosophy of science, Vol. 27, 312–329, Boston studies in the philosophy of science. Boston: D. Reidel.

    Google Scholar 

  3. Bernstein, H., Byerly, H.C., Hopf, F.A., Michod, R.A., and Vemulapalli, G.K. (1983). The Darwinian dynamic.- Quart Rev Biol 58: 185–207.

    Google Scholar 

  4. Bowler, P.J. (1983). The eclipse of Darwinism.- Baltimore: John Hopkins University Press.

    Google Scholar 

  5. Brooks, D.R. (1980). Allopatric speciation and non-interactive parasite community structure.- Syst Zool 29: 192–203.

    Google Scholar 

  6. Brooks, D.R. (1981). Classifications as languages of empirical comparitive biology. In V.A. Funk and D.R. Brooks, eds., Advances in cladistics, Vol. 1, 61–70. New York: New York Botanical Garden.

    Google Scholar 

  7. Brooks, D.R., Leblond, P.H., and Cumming, D.D. (1984). Information and entropy in a simple evolution model.- J theor Biol 109: 77–93.

    Google Scholar 

  8. Brooks, D.R., and Wiley, E.O. (1984). Evolution as an entropic phenomenon. In J.W. Pollard, ed., Evolutionary theory: paths to the future, 141–171. London: John Wiley and Sons.

    Google Scholar 

  9. Brooks, D.R., and Wiley, E.O. (1985). Nonequilibrium thermodynamics and evolution: responses to Bookstein and to Wicken.- Syst Zool 34: 89–97.

    Google Scholar 

  10. Brooks, D.R., and Wiley, E.O. (in press). Evolution as entropy: Toward a unified theory of biology.- Chicago: Univ Chicago Press.

  11. Chalesworth, B., Lande, R., and Slatkin, M. (1982). A neo-Darwinian commentary on macroevolution.- Evolution 36: 474–498.

    Google Scholar 

  12. Churchland, P.M. (1982). Is thinker a natural kind?- Dialogue 21: 223–238.

    Google Scholar 

  13. Denbigh, K.G. (1975). A non-conserved function for organized systems. In L. Kubat and J. Zemen, eds., Entropy and information in science and philosophy, 83–92. New York: American Elsevier.

    Google Scholar 

  14. Edelman, G.M. (1984). Cell-adhesion molecules: A molecular basis for animal form.- Scientific Amer 250: 118–129.

    Google Scholar 

  15. Elsasser, W.M. (1983). Biological application of the statistical concepts used in the Second Law.- J theor Biol 105: 103–116.

    Google Scholar 

  16. Fleagle, J.G. (1977). Locomotor behavior and muscular anatomy of sympatric Malaysian leaf-monkeys (Presbytis obscura and Presbytis melalophes).- Amer J Phys Anthropol 46: 297–308.

    Google Scholar 

  17. Fleagle, J.G. (1979). Primate positional behavior and anatomy: naturalistic and experimental approaches. In M.E. Morbeck, H. Preuschoft, and N. Gomberg, eds., Environment, behavior and morphology, 313–325. Stuttgart: Gustav Fischer.

    Google Scholar 

  18. Frautschi, S. (1982). Entropy in an expanding universe.- Science 217: 593–599.

    Google Scholar 

  19. Galton, F. (1892). Hereditary genius. Rev. ed. Reprinted ed.- Cleveland: Meridian, 1962.

    Google Scholar 

  20. Gatlin, L.L. (1972). Information theory and the living system.- New York: Columbia University Press.

    Google Scholar 

  21. Goodwin, B.C. (1982). Development and evolution.- J theor Biol 97: 43–55.

    Google Scholar 

  22. Gould, S.J. (1980). Is a new and general theory of evolution emerging? - Paleobiol 6: 119–130.

    Google Scholar 

  23. Gould, S.J., and Lewontin, R.C. (1979). The spandrels of San Marco and the Panglossian Paradigm: A critique of the adaptationist programme. Proc R Soc Lond B205: 581–598.

    Google Scholar 

  24. Haken, H. (1978). Synergetics.- Berlin: Springer Verlag.

    Google Scholar 

  25. Hamilton, H.J. (1977). A thermodynamic theory of the origin and hierarchical evolution of living systems.- Zygon 12: 289–335.

    Google Scholar 

  26. Heitler, W. (1966). Man and science. In R.T. Blackburn, ed., Interrelation: the biological and physical sciences, 172–184.- Chicago: Scott, Foresman and Co.

    Google Scholar 

  27. Hempel, C.G. (1965). Aspects of scientific explanation.- New York: Free Press.

    Google Scholar 

  28. Hennig, W. (1966). Phylogenetic systematics.- Urbana: University of Illinois Press.

    Google Scholar 

  29. Hofstadter, D.R. (1979). Gödel, Escher, Bach.- New York: Basic Books.

    Google Scholar 

  30. Hollinger, H.B., and Zenzen, M.J. (1982). An interpretation of macroscopic irreversibility within the Newtonian framework.- Philos Sci 49: 309–354.

    Google Scholar 

  31. Holmes, S.J. (1944). Recapitulation and its supposed causes.- Quart Rev Biol 19: 319–331.

    Google Scholar 

  32. Jacob, F. (1982). The possible and the actual.- New York: Pantheon.

    Google Scholar 

  33. Jantsch, E. (ed.) (1981). The evolutionary vision.- Boulder, Colorado: Westview Press.

    Google Scholar 

  34. Johnson, L. (1981). The thermodynamic origin of ecosystems.- Can J Fish Aquat Sci 38: 571–580.

    Google Scholar 

  35. Karreman, G. (1955). Topological information content and chemical reactions.- Bull math Biophysics 17: 279–285.

    Google Scholar 

  36. 36.Kelley, H.J. (1969). Entropy of knowledge.- Philos Sci 36: 178–196.

    Google Scholar 

  37. Kettlewell, H.B.D. (1955). Selection experiments on industrial melanism in the Lepidoptera.- Heredity 9: 323–342.

    Google Scholar 

  38. Kettlewell, H.B.D. (1961). Geographical melanism in the Lepidoptera of Shetland.- Heredity 16: 393–402.

    Google Scholar 

  39. Kettlewell, H.B.D. (1965). Insect survival and selection for pattern. Science 148: 1290–1296.

    Google Scholar 

  40. Lauder, G.V. (1981). Form and function: Structural analysis in evolutionary morphology.- Paleobiol 7: 430–442.

    Google Scholar 

  41. Lauder, G.V. (1982). Historical biology and the problem of design. J theor Biol 97: 57–67.

    Google Scholar 

  42. Layzer, D. (1975). The arrow of time.- Scientific Amer 233(6): 56–69.

    Google Scholar 

  43. Mann, A.K., and Primakoff, H. (1983). Statistical fluctuation versus specific mechanism and the origin of the left-handed assymetry of proteins.- Origins of Life 13: 113–118.

    Google Scholar 

  44. Mayr, E. (1974). Teleological and teleonomic, a new analysis. In R.S. Cohen and M.W. Wartofsky, eds., Methodological and historical essays in the natural and social sciences, 91–117, Vol. 14, Boston studies in the philosophy of science.- Boston: D. Reidel.

    Google Scholar 

  45. Mayr, E. (1983). How to carry out the adaptionist program?- Amer Nat 121: 324–334.

    Google Scholar 

  46. Nagel, E. (1977). Teleology revisited.- J Philos 74: 271–301.

    Google Scholar 

  47. Nagel, E., and Newman, J.R. (1958). Gödel's Proof.- New York: New York University Press.

    Google Scholar 

  48. O'Grady, R.T. (1984). Evolutionary theory and teleology.- J theor Biol 107: 563–578.

    Google Scholar 

  49. Pittendrigh, C.S. (1958). Adaptation, natural selection and behavior. In A. Roe and G.G. Simpson, eds., Behavior and evolution, 390–416.- New Haven: Yale University Press.

    Google Scholar 

  50. Polanyi, M. (1968). Life's irreducible structure.- Science 160: 1308–1312.

    Google Scholar 

  51. Prigogine, I. (1980). From being to becoming.- San Francisco: W.H. Freeman.

    Google Scholar 

  52. Prigogine, I., and Stengers, I. (1984). Order out of chaos.- New York: Bantam.

    Google Scholar 

  53. Shimizu, H., and Haken, H. (1983). Co-operative dynamics in organelles. - J theor Biol 104: 261–273.

    Google Scholar 

  54. Schrödinger, E. (1945). What is life?- Cambridge: Cambridge University Press.

    Google Scholar 

  55. Simpson, G.G. (1958). Behavior and evolution. In A. Roe and G.G. Simpson, eds., Behavior and evolution, 507–535.- New Haven: Yale University Press.

    Google Scholar 

  56. Smith, R.J. (1982). On the mechanical reduction of function and morphology.- J theor Biol 96: 99–106.

    Google Scholar 

  57. 57.Tax, S. (ed.) (1960). Evolution after Darwin, Vol. 3, The evolution of life.- Chicago: University of Chicago Press.

    Google Scholar 

  58. Thompson, D'A. (1917). On growth and form.- Cambridge: Cambridge University Press.

    Google Scholar 

  59. Thompson, R.P. (1982). Explaining complexity in evolution.- Dialogue 21: 255–269.

    Google Scholar 

  60. Waddington, C.H. (1977). Tools for thought.- St. Alban's: Paladin.

    Google Scholar 

  61. Wicken, J.S. (1979). The generation of complexity in evolution: A thermodynamic and information-theoretical discussion.- J theor Biol 77: 349–365.

    Google Scholar 

  62. Wicken, J.S. (1981). Causal explanations in classical and statistical thermodynamics.- Philos Sci 48: 65–77.

    Google Scholar 

  63. Wiley, E.O., and Brooks, D.R. (1982). Victims of history — a non-equilibrium approach to evolution.- Syst Zool 31: 1–24.

    Google Scholar 

  64. Wiley, E.O., and Brooks, D.R. (1983). Nonequilibrium thermodynamics and evolution: A response to Løvtrop.- Syst Zool 32: 209–219.

    Google Scholar 

  65. Yockey, H.P. (1972). Information theory with applications to biogenesis and evolution. In A. Locker, ed., Biogenesis, evolution, homeostasis, 9–23.- New York: Springer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, D.R., O'Grady, R.T. Nonequilibrium thermodynamics and different axioms of evolution. Acta Biotheor 35, 77–106 (1986). https://doi.org/10.1007/BF00118368

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118368

Key words

Navigation