Skip to main content
Log in

Quantum evaporation from quantum liquids and solids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Quantum evaporation is the evaporation of atoms from the surface of a liquid or solid by single excitations, such as phonons. We show that this process can only occur in systems for which the deBoer quantum parameter is above a critical value. For superfluid helium we argue that, because the interface between liquid and gas is not sharp, it may be useful to consider quantum evaporation as a process in which excitations coming from the liquid are adiabatically deformed as they propagate through the interface and then emerge as gas atoms. Based on this picture, we make several predictions which can be tested experimentally. Finally, we discuss quantum evaporation in solid hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, the discussion in J. Wilks, Liquid and Solid Helium (Oxford, London, 1967), chapter 20.

    Google Scholar 

  2. K. R. Atkins, B. Rosenbaum, and H. Seki, Phys. Rev. 113, 751 (1959).

    Google Scholar 

  3. D. V. Osborne, Proc. Phys. Soc. 80, 103 and 1343 (1962); G. H. Hunter and D. V. Osborne, Proc. Phys. Soc. Lond. 2, 2414 (1969); W. D. Kessler and D. V. Osborne, J. Phys. C. 13, 1571 (1980).

    Google Scholar 

  4. D. T. Meyer, H. Meyer, W. Halliday, and C. F. Kellers, Cryogenics 3, 150 (1963).

    Google Scholar 

  5. W. D. Johnston and J. G. King, Phys. Rev. Lett. 16, 1191 (1966).

    Google Scholar 

  6. K. Andres, R. C. Dynes, and V. Narayanamurti, Phys. Rev. A8, 2501 (1973).

    Google Scholar 

  7. S. Balibar, Phys. Lett. 51A, 455 (1975). See also the subsequent experiment by S. Balibar, J. Buechner, B. Castaing, C. Laroche, and A. Libchaber, Phys. Lett. 60A, 135 (1977).

    Google Scholar 

  8. M. J. Baird, F. R. Hope, and A. F. G. Wyatt, Nature 304, 305(1983).

    Google Scholar 

  9. F. R. Hope, M. J. Baird, and A. F. G. Wyatt, Phys. Rev. Lett. 52, 1528 (1984).

    Google Scholar 

  10. A. F. G. Wyatt, Physica 126B, 392 (1984).

    Google Scholar 

  11. M. Baird, B. Richards, and A. F. G. Wyatt, Jap. J. Appl. Phys. 263, 387 (1987).

    Google Scholar 

  12. M. Brown and A. F. G. Wyatt, Jap. J. Appl. Phys. 26–3, 385 (1987).

    Google Scholar 

  13. G. M. Wyborn and A. F. G. Wyatt, Jap. J. Appl. Phys. 26–3, 2095 (1987).

    Google Scholar 

  14. M. Brown and A. F. G. Wyatt, in Phonons 89, S. Hunklinger, W. Ludwig, and G. Weiss, eds. (World Scientific, Singapore, 1990), p. 1050.

    Google Scholar 

  15. M. Brown and A. F. G. Wyatt, in Phonons 89, S. Hunklinger, W. Ludwig, and G. Weiss, eds. (World Scientific, Singapore, 1990), p. 1053.

    Google Scholar 

  16. A. F. G. Wyatt, in Phonons 89, S. Hunklinger, W. Ludwig, and G. Weiss, eds. (World Scientific, Singapore, 1990), p. 1019.

    Google Scholar 

  17. G. M. Wyborn and A. F. G. Wyatt, Phys. Rev. Lett. 65, 345 (1990).

    Google Scholar 

  18. M. Brown and A. F. G. Wyatt, J. Phys. C: Cond. Matt. 2, 5025 (1990).

    Google Scholar 

  19. R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1969).

    Google Scholar 

  20. J. Eckardt, D. O. Edwards, F. M. Gasparini, and S. Y. Shen, Proc. 13th Int. Conf. on Low Temperature Physics LT-13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum, New York, 1973), p. 518.

    Google Scholar 

  21. D. O. Edwards, P. Fatouros, G. G. Ihas, P. Mrozinski, S. Y. Shen, F. M. Gasparini, and C. P. Tam, Phys. Rev. Lett. 34, 1153 (1975).

    Google Scholar 

  22. D. O. Edwards, P. P. Fatouros, G. G. Ihas, P. Mrozinski, S. Y. Shen, and C. P. Tam, in Quantum Statistics and the Many-Body Problem, S. B. Trickey, W. P. Kirk, and J. W. Duffym eds. (Plenum, New York, 1975), p. 175.

    Google Scholar 

  23. D. O. Edwards, G. G. Ihas, C. P. Tam, Phys. Rev. B 16, 3122 (1977).

    Google Scholar 

  24. V. V. Nayak, D. O. Edwards, and N. Masuhara, Phys. Rev. Lett. 50, 990 (1983).

    Google Scholar 

  25. S. Mukherjee, D. Candela, D. O. Edwards, and S. Kumar, Jap. J. Appl. Phys. 26–3, 257 (1987).

    Google Scholar 

  26. S. Mukherjee, D. O. Edwards, and S. Kumar, preprint.

  27. A. Widom, Phys. Lett. 29A, 96(1969); D. S. Hyman, M. O. Scully, and A. Widom, Phys. Rev. 186, 231 (1969); P. W. Anderson, Phys. Lett. 29A, 563 (1969).

    Google Scholar 

  28. M. W. Cole, Phys. Rev. Lett. 28, 1622 (1972).

    Google Scholar 

  29. C. Caroli, B. Roulet, and D. Saint-James, Phys. Rev. B 13, 3875, 3884 (1976).

    Google Scholar 

  30. D. O. Edwards and P. P. Fatouros, Phys. Rev. B 17, 2147 (1978).

    Google Scholar 

  31. F. O. Goodman and N. Garcia, Phys. Rev. B 33, 4560 (1986).

    Google Scholar 

  32. P. M. Echenique and J. B. Pendry, Phys. Rev. Lett. 37, 561 (1976); J. Phys. C: Sol. State Phys. 9, 3183 (1976).

    Google Scholar 

  33. T. Usagawa, Phys. Lett. 73A, 339 (1979).

    Google Scholar 

  34. D. R. Swanson and D. O. Edwards, Phys. Rev. 37, 1539 (1988).

    Google Scholar 

  35. They point out that the calculated minimum time for the arrival of phonons is typically 5%; larger than the experimentally-measured value. This discrepancy is more than can be explained by the uncertainties in the experimental data or in the measurement of the phonon group velocity from the excitation dispersion curve.

  36. C. Ebner and W. F. Saam, Phys. Rev. B 12, 923 (1975).

    Google Scholar 

  37. See, for example, L. D. Landau and I. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1965).

    Google Scholar 

  38. The momentum is in nearly all cases smaller on the gas side than in the liquid. A gas atom with momentum 0.1 »−1 has energy 0.06 K. Thus, for a gas atom of above this energy k min≥0.1»−1.

  39. A. F. Andreev, Sov. Phys.-JETP 19, 1228 (1964).

    Google Scholar 

  40. M. Nielsen, Phys. Rev. B 7, 1626 (1973).

    Google Scholar 

  41. This is obtained in Ref. 40 by constructing a lattice-dynamical model that fits the neutron scattering data. The highest energy phonon mode is not directly measured in the experiment.

  42. See, for example, P. C. Souers, Hydrogen Properties for Fusion Energy (University of California, Berkeley, 1986), p. 112.

    Google Scholar 

  43. Strictly, this remark is incorrect for a crystal which is in its lowest energy state at very low temperatures. Such a crystal would have atomically-smooth facetted surfaces, and the energy to remove any atom (except a very small number on the edges or corners) would be the same. This energy would be larger than the average binding energy per molecule. After one atom was removed from a facet the crystal could, in principle, rearrange itself into a state of lower energy in which its surface was again entirely made up of facets without missing atoms. We are assuming that this rearrangement takes a very long time and can be neglected. Then for a crystal undergoing quantum evaporation in a continuous way surface atoms inevitably exist in a variety of configurations.

  44. C. Delalande and G. M. Gale, Chem. Phys. Lett. 50, 339 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maris, H.J. Quantum evaporation from quantum liquids and solids. J Low Temp Phys 87, 773–792 (1992). https://doi.org/10.1007/BF00118334

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118334

Keywords

Navigation