Skip to main content
Log in

The aqueous thermal boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

This article reviews the available data, measurement techniques, and present understanding of the millimeter thick aqueous thermal boundary layer. A temperature difference between the surface and lower strata, δT, of the order of a few tenths to −1 °C have been observed. Techniques ranging from miniature mercury thermometers and electrical point sensors to optical interferometry and infrared radiometry have been employed. Many processes influence the temperature structure in this thin boundary layer. Among them are: the net upward heat flux due to evaporation and sensible heat transfer; infrared and solar radiation; and the turbulence near the interface due to wind mixing, wave breaking and current shear. Presence of solute and surface-active materials stimulate or dampen these mixing processes thereby influencing boundary-layer thickness and temperature structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, L. J., Arking, A., Bandeen, W. R., Shenk, W. E., and Wexler, R.: 1975, ‘Meteorological Satellite Accomplishments’, Rev. Geophys. Space Phys. 13, 737–745.

    Google Scholar 

  • Ball, F. K.: 1954, ‘Sea Surface Temperature’, Australian J. Physics 7, 649–652.

    Google Scholar 

  • Bénard, H.: 1901, ‘Les toubillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent’, Ann. Chim. Phys. 11, 1261–1271.

    Google Scholar 

  • Berg, J. C., Acrivos, A., and Boudart, M.: 1966, ‘Evaporative Convection’, Adv. Chem. Engin. 6, 61–123.

    Google Scholar 

  • Bjerknes, J.: 1969, ‘Atmospheric Teleconnections from the Equatorial Pacific’, Monthly Weather Rev. 97, 163–172.

    Google Scholar 

  • Boudreau, R. D.: 1965, ‘Skin Temperature of the Sea as Determined by Radiometer’, Ref. 65–15T, A & M Proj. 286, Texas A & M Research Foundation, College Station, Texas, 68 pp.

    Google Scholar 

  • Busse, F. H. and Whitehead, J. A.: 1974, ‘Oscillatory and Collective Instabilities in Large Prandtl Number Convection’, J. Fluid Mech. 66, 67.

    Google Scholar 

  • Caldwell, D. R. and Elliott, W. P.: 1971, ‘Surface Stresses Produced by Rainfall’, J. Phys. Oceanog. 1, 145–148.

    Google Scholar 

  • Carroll, J. J. III: 1971, ‘The Structure of Turbulent Convection’, Ph.D. Thesis, Department of Meteorology, University of California, Los Angeles, California.

    Google Scholar 

  • Carslaw, H. S. and Jaeger, J. C.: 1959, Conduction of Heat in Solids, 2nd edn., Clarendon Press, Oxford.

    Google Scholar 

  • Chang, J. H. and Wagner, R. N.: 1975, ‘Laboratory Measurement of Surface Temperature Fluctuations Induced by Small Amplitude Surface Waves’, J. Geophys. Res. 80, 2677–2687.

    Google Scholar 

  • Chernousko, Yu. L.: 1971, ‘Laboratory Investigation of Microconvention’, Izv. Atmospheric and Ocean Phys. 7, 1096–1098.

    Google Scholar 

  • Chernousko, Yu. L. and Shumilov, A. V.: 1971, ‘Evaporation and Microconvection in a Thin Surface Layer’, Oceanology 9, 812–816.

    Google Scholar 

  • Chu, T. Y. and Goldstein, R. J.: 1973, ‘Turbulent Convection in a Horizontal Layer of Water’, J. Fluid Mech. 60, 141–159.

    Google Scholar 

  • Clauss, E., Hinzpeter, H., and Mueller-Glewe, J.: 1970, ‘Messungen zur Temperaturstruktur im Wasser an der Gränzfläche Ozean-Atmosphäre’, ‘Meteor’ Forsch. Ergebnisse, Reihe B., 90–94.

  • Coantic, M.: 1977, ‘Les echanges de masse a traverse l'interface ocean-atmosphere: mechanismes hydro et aerodynamiques a Petite Echelle’, Report from Institut de Mecanique Statistique de la Turbulence, Laboratoire Associé au C.N.R.S., 12, Avenue du Général Leclerc, 13003, Marseille, 60 pp.

    Google Scholar 

  • Crapper, G. D.: 1957, ‘An Exact Solution for Progressive Capillary Waves of Arbitrary Amplitude’, J. Fluid Mech. 2, 532–540.

    Google Scholar 

  • Danckwerts, P. V.: 1951, ‘Significance of Liquid Film Coefficients in Gas Absorption’, Ind. Eng. Chem. 43, 1460–1467.

    Google Scholar 

  • Deardorff, J. W. and Willis, G. E.: 1967, ‘Investigation of Turbulent Thermal Convection Between Horizontal Plates’, J. Fluid Mech. 28, 675–704.

    Google Scholar 

  • Defant, A. and Ertel, H.: 1939, ‘Durch Niederschlaege Verursachte Stoerungen des Salzgehaltes im Ozean und deren Ausgleich durch Turbulenz’, Abhandl. Preuss. Akademie der Wissenschaften, Math. Naturw. Klasse Nr 10, Berlin 1939.

  • Elder, J. W.: 1969, ‘The Temporal Development of a Model of High Rayleigh Number Convection’, J. Fluid Mech. 35, 417–457.

    Google Scholar 

  • Ewing, G. C. and McAlister, E. D.: 1960, ‘On the Thermal Boundary Layer of the Ocean’, Science 131, 1374–1376.

    Google Scholar 

  • Fitzjarrald, D. E.: 1976, ‘An Experimental Study of Turbulent Convection in Air’, J. Fluid Mech. 73, 693–719.

    Google Scholar 

  • Foster, T. D.: 1971, ‘Intermittent Convection’, Geophys. Fluid Dyn 2, 201–217.

    Google Scholar 

  • Grassl, M. and Hinzpeter, H.: 1975, ‘The Cool Skin of the Ocean’, GATE Report 14, Vol. II, World Meteorological Organization, International Council of Scientific Unions, Geneva, 229–239.

    Google Scholar 

  • Hasse, L.: 1963, ‘On the Cooling of the Sea Surface by Evaporation and Heat Exchange’, Tellus 15, 363–366.

    Google Scholar 

  • Hasse, L.: 1971, ‘The Sea Surface Temperature Deviation and the Heat Flow at the Sea-Air Interface’, Boundary-Layer Meteorol. 1, 368–379.

    Google Scholar 

  • Haussler, W.: 1956, ‘Ueber Temperaturprofile Beiderseits einer Verdunstenden Wasserflaeche’, Wiss. Z. Tech. Hochsch. Dresden 5, 435–450.

    Google Scholar 

  • Hill, R. H.: 1970, ‘Laboratory Measurements of Heat Transfer, Wind Velocity Profiles and Temperature Structure at an Air/Water Interface’, Naval Research Report 7212, 31 pp.

  • Holladay, C. G. and O'Brien, J. J.: 1975, ‘Mesoscale Variability of Sea Surface Temperatures’, J. Phys. Oceanog. 5, 761–772.

    Google Scholar 

  • Howard, L. N.: 1966, ‘Convection at High Rayleigh Number’, Proceedings of the Eleventh International Congress of Applied Mechanics, Munich (Germany) (ed. by H. Goertler), 1109–1115.

  • Jarvis, N. L.: 1962, ‘The Effect of Monomolecular Films on Surface Temperature and Convective Motion at the Water/Air Interface’, J. Colloid Sci. 17, 512–522.

    Google Scholar 

  • Katsaros, K. B.: 1973, ‘Supercooling at the Surface of an Arctic Lead’, J. Phys. Oceanog. 3, 482–486.

    Google Scholar 

  • Katsaros, K. B.: 1976a, ‘The Sea Surface Temperature Deviation at very Low Wind Speeds: Is There a Limit?’, Tellus 29, 229–239.

    Google Scholar 

  • Katsaros, K. B.: 1976b, ‘Effects of Precipitation on the Eddy Exchange in a Wind Driven Sea’, Dynamics of Atmospheres and Oceans 1, 99–126.

    Google Scholar 

  • Katsaros, K. B.: 1978, ‘Turbulent Free Convection in Water: Some Characteristics Revealed by Visualization’, J. Phys. Oceanog. 8, 613–626.

    Google Scholar 

  • Katsaros, K. B. and Buettner, K. J. K.: 1969, ‘Influence of Rainfall on Temperature and Salinity at the Ocean Surface’, J. Appl. Meteorol. 8, 15–18.

    Google Scholar 

  • Katsaros, K. B. and Businger, J. A.: 1973, ‘Comments on the Determination of the Total Heat Flux from the Sea with a Two-wave Length Radiometer as Developed by McAlister’, J. Geophys. Res. 78, 1964–1969.

    Google Scholar 

  • Katsaros, K. B. and Liu, W. T.: 1974, ‘Supercooling at a Free Salt Water Surface in the Laboratory’, J. Phys. Oceanog. 4, 654–658.

    Google Scholar 

  • Katsaros, K. B., Liu, W. T., Businger, J. A., and Tillman, J. E.: 1977, ‘Heat Transport and Thermal Structure in the Interfacial Boundary Layer Measured in an Open Tank of Water in Turbulent Free Convection’, J. Fluid Mech. 83, 311–335.

    Google Scholar 

  • Katsaros, K. B., Shaw, W. J., and Drummond, K.: ‘Laboratory Experiments on the Interaction Between Surface Waves and Free Convection in Water’, in Proceedings of NATO Symposium on Turbulent Fluxes through the Sea Surface, Wave Dynamics and Prediction, Marseille, September, 1977.

  • Khundzhua, G. G. and Andreyev, Ye. G.: 1974, ‘An Experimental Study of Heat Exchange Between the Ocean and the Atmosphere in Small-scale Interaction’, Izv. Atmosph. Oceanic Phys. 10, 1110–1113 (in Russian).

    Google Scholar 

  • Khundzhua, G. G., Gusev, A. M., Andreyev, Ye. G., Gurov, V. V., Skorokhvatov, N. A.: 1978, ‘Structure of the Cold Surface Film of the Ocean and Heat Transfer Between the Ocean and the Atmosphere’, Izv. Atmosph. Oceanic Phys. 13, 506–509 (in Russian).

    Google Scholar 

  • Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W.: 1967, ‘The Structure of Turbulent Boundary Layers’, J. Fluid Mech. 30, 741–773.

    Google Scholar 

  • Kraus, E. B.: 1972, Atmosphere Ocean Interaction, Clarendon Press, Oxford.

    Google Scholar 

  • Krishnamurti, R.: 1970, ‘On the Transition to Turbulent Convection. Part 2: The Transition to Time-dependent Flow’ J. Fluid Mech. 42, 309–320.

    Google Scholar 

  • Lee, J. A.: 1972, ‘Stability of the Thermal Boundary Layer and Sea Surface Temperature’, Unpublished Manuscript, Department of Oceanography, University of Washington, Seattle, Washington.

    Google Scholar 

  • Levich, V. G.: 1962, Physiochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Liu, W. T.: 1978, ‘The Molecular Effects on Air-Sea Exchanges’, Ph.D. Thesis, Department of Atmospheric Sciences, University of Washington, Seattle, WA.

    Google Scholar 

  • Liu, W. T. and Businger, J. A.: 1975, ‘Temperature Profile in the Molecular Sublayer near the Interface of a Fluid in Turbulent Motion’, Geophys. Res. Lett. 2, 403–404.

    Google Scholar 

  • MacIntyre, J.: 1974, ‘The Top Millimeter of the Ocean’, Sci. Am. 230, 62–77.

    Google Scholar 

  • Malkus, J. S.: 1962, ‘Large Scale Interactions’, The Sea, Vol. I (ed. by M. N. Hill), Interscience Publishers, New York, 88–294.

    Google Scholar 

  • Manton, M. J.: 1972, ‘On the Attenuation of Sea Waves by Rain’, Geophys. Fluid Dyn. 5, 249–260.

    Google Scholar 

  • Marangoni, C.: 1872, ‘On the Principle of the Surface Viscosity of Liquids Established by Mr. J. Plateau’, NASA TT P-16, 818 (translated from Italian, Nuovo Cimento 2, V–VI, 239–273).

  • Marangoni, C.: 1878, Nuovo Cimento (3) 3, 97. c(See previous reference.)Marangoni C.: 1872, ‘On the Principle of the Surface Viscosity of Liquids Established by Mr. J. Plateau’, NASA TT P-16, 818 (translated from Italian, Nuovo Cimento 2, V–VI, 239–273).

  • Matisse, P.: 1974, ‘A Flow-indicating Fluid’, manuscript from Kalliroscope Corporation, 145 Main Street, Cambridge, Mass.

    Google Scholar 

  • McAlister, E. D.: 1964, ‘Infrared Optical Techniques Applied to Oceanography: I. Measurement of Total Heat Flow from the Sea Surface’, Appl. Optics 3, 609–612.

    Google Scholar 

  • McAlister, E. D. and McLeish, W.: 1969, ‘Heat Transfer in the Top Millimeter of the Ocean’, J. Geophys. Res. 74, 3408–4180.

    Google Scholar 

  • McAlister, E. D. and McLeish, W.: 1970, ‘A Radiometer System for Measurement of the Total Heat Flux from the Sea’, Appl. Optics 9, 2697–2705.

    Google Scholar 

  • McAlister, E. D., McLeish, W., and Corduan, A.: 1971, ‘Airborne Measurements of the Total Heat Flux from the Sea during BOMEX’, J. Geophys. Res. 76, 4172–4180.

    Google Scholar 

  • McLeish, W.: 1968, ‘On the Mechanism of Wind Slick Generation’, Deep Sea Res. 15, 461–469.

    Google Scholar 

  • McLeish, W. and Putland, G. E.: 1975, ‘Measurements of Wind-driven Flow Profiles in the Top Millimeter of Water’, J. Phys. Oceanog. 5, 516–518.

    Google Scholar 

  • Miller, A. W. Jr., Street, R. L., and Hsu, E. T.: 1975, ‘The Structure of the Aqueous Thermal Sublayer at an Air-Water Interface’, Technical Report No. 195, Department of Civil Engineering, Stanford University.

  • Namias, J.: 1969, ‘Seasonal Interactions Between the North Pacific Ocean and the Atmosphere during the 1960s’, Mon. Weather Rev. 97, 173–192.

    Google Scholar 

  • Neumann, G.: 1940, ‘Die Ozeanographische Verhältnisse an der Meersoberflaeche im Gulfstromsektor Noerdlich und Nordwestlich der Azoren', Aus den Wiss. Erg. d. Intern. Golfstrom-Unternehmung, 1938’. Ann. Hydro. Mar. Met., 1–87.

  • O'Brien, E.: 1967, ‘On the Flux of Heat Through Laminar Wavy Liquid Layers’, J. Fluid Mech. 28, 295–303.

    Google Scholar 

  • O'Brien, E. E. and Omholt, T.: 1969, ‘Heat Flux and Temperature Variation at a Wavy Water-Air Interface’, J. Geophys. Res. 74, 3384–3385.

    Google Scholar 

  • Omholt, Thore: 1973, ‘Estimation of the Oceanic Momentum Sublayer Thickness’, J. Phys. Oceanog. 3, 337–338.

    Google Scholar 

  • Osborne, M. F. M.: 1965, ‘The Effect of Convergent and Divergent Flow Patterns on Infrared and Optical Radiation from the Sea’, Dt. Hydrogr. Z. 18, 1–25.

    Google Scholar 

  • Ostapoff, F., Tarbeyev, Yu, and Worthem, S.: 1973, ‘Heat Flux and Precipitation Estimates from Oceanographic Observations’, Science 180, 960–962.

    Google Scholar 

  • Palmer, H. J. and Berg, J. C.: 1972, ‘Stability of Surfactant Solutions Heated from Below’, J. Fluid Mech. 51, 385–402.

    Google Scholar 

  • Paulson, C. A. and Parker, T. W.: 1972, ‘Cooling of a Water Surface by Evaporation, Radiation, and Heat Transfer’, J. Geophys. Res. 77, 491–495.

    Google Scholar 

  • Pearson, J. R. A.: 1958, ‘On Convection Cells Induced by Surface Tension’, J. Fluid Mech. 4, 489–500.

    Google Scholar 

  • Plesset, M. S., Whipple, C. G., and Winet, H.: 1975, ‘Rayleigh-Taylor Instability of Surface Layers as the Mechanism for Bioconvection in Cell Cultures’, manuscript from California Institute of Technology, Pasadena, California.

    Google Scholar 

  • Reynolds, O.: 1900, Papers on Mechanical and Physical Subjects, Vol. I, Cambridge University Press, Cambridge, Massachusetts.

  • Rossby, H. T.: 1969, ‘A Study of Bénard Convection With and Without Rotation’, J. Fluid Mech. 36, 309–335.

    Google Scholar 

  • Saunders, P. M.: 1967a, ‘Aerial Measurement of Sea Surface Temperature in the Infrared’, J. Geophys. Res. 72, 4109–4117.

    Google Scholar 

  • Saunders, P. M.: 1967b, ‘The Temperature of the Ocean-Air Interface’, J. Atmos. Sci. 24, 269–273.

    Google Scholar 

  • Saunders, P. M.: 1970, ‘Corrections for Airborne Radiation Thermometry’, J. Geophys. Res. 75, 7596–7601.

    Google Scholar 

  • Saunders, P. M.: 1973, ‘The Skin Temperature of the Ocean-a Review’, Mémoires Société Royale des Sciences de Liege Series, 4, 93–98.

    Google Scholar 

  • Saunders, P. M. and Wilkins, C. H.: 1966, ‘Precise Airborne Radiation Thermometry’, Proc. 4th Symposium on Remote Sensing of Environment, Institute of Science and Technology, University of Michigan, Ann Arbor, Michigan, 815–826.

    Google Scholar 

  • Schlichting, H.: 1968, Boundary Layer Theory, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Schott, G.: 1893, ‘Wissenschaftliche Ergebnisse einer Forschungsreise zur See Ausgefuehrt in den Jahren 1891 und 1892’, Petermanns Mitteilungen Ergaenzungsheft Nr. 109, Gotha 1893, 12–15 and 28–29.

  • Spangenberg, W. W. and Rowland, W. R.: 1961, ‘Convective Circulation in Water Induced by Evaporative Cooling’, Phys. Fluids 4, 743–750.

    Google Scholar 

  • Stern, M. E.: 1960, ‘The Salt Fountain and Thermohaline Convection’, Tellus 12, 172–175.

    Google Scholar 

  • Sutcliffe, W. H., Baylor, E. R., and Menzel, D.: 1963, ‘Sea Surface Chemistry and Langmuir Circulation’, Deep Sea Research 10, 233–243.

    Google Scholar 

  • Tully, J. P.: 1965, Recommendation of the Panel on Sea Surface Temperature, In Oceanography from Space (ed. by G. C. Ewing), Woods Hole Oceanographic Institution, Ref. No. 65-10, p. 117–118.

  • Twitchell, P. F.: 1976, ‘Water-Air Boundary Investigations’, Ph.D. Thesis, University of Wisconsin-Madison, Department of Meteorology, Madison, Wisconsin.

    Google Scholar 

  • Van de Watering, W. P. M. and Wiggert, D. C.: 1968, ‘Surface Temperature Fluctuations Due to Waves’, Trans. Amer. Geophys. Un. 49, 204–205.

    Google Scholar 

  • Van Dorn, W. G.: 1966, ‘Boundary Dissipation of Oscillatory Waves’, J. Fluid Mech. 24, 769–779.

    Google Scholar 

  • Von Karman, Th.: 1934, ‘Turbulence and Skin Friction’, J. Aeron. Sco. 1, 1–18.

    Google Scholar 

  • Webb, E. K.: 1974, ‘The Cool Skin of Open Water Surfaces’, paper read at International Union of Geodesy and Geophysics First Special Assembly at Melbourne, January 1974. Procesverbeaux No. 13, p. 163.

  • Willis, G. E. and Deardorff, J. W.: 1967, ‘Development of Short Period Temperature Fluctuations in Thermal Convection’, Phys. Fluids 10, 931–937.

    Google Scholar 

  • Witting, J.: 1971, ‘Effects of Plane Progressive Irrotational Waves on Thermal Boundary Layers’, J. Fluid Mech. 50, 321–334.

    Google Scholar 

  • Witting, J.: 1972, ‘Temperature Fluctuations at an Air-Water Interface Caused by Surface Waves’, J. Geophys. Res. 77, 3265–3269.

    Google Scholar 

  • Woodcock, A. H.: 1941, ‘Surface Cooling and Streaming in Shallow Fresh and Salt Waters’, J. Mar. Res. 4, 153–161.

    Google Scholar 

  • Woodcock, A. H. and Stommel, H.: 1947, ‘Temperatures Observed Near the Surface of a Fresh Water Pond at Night’, J. Meteorol. 4, 102–103.

    Google Scholar 

  • Wu, J.: 1971, ‘An Estimation of Oceanic Thermal Sublayer Thickness’, J. Phys. Oceanog. 7, 284–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Department of Atmospheric Sciences Contribution Number 354.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsaros, K.B. The aqueous thermal boundary layer. Boundary-Layer Meteorol 18, 107–127 (1980). https://doi.org/10.1007/BF00117914

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117914

Keywords

Navigation