Skip to main content
Log in

A numerical study of the marine stratocumulus cloud layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A one-dimensional grid-level model including longwave radiative transfer and a level-4 second-order turbulent transfer closure which contains prognostic equations for turbulent quantities, is used to study the physics and dynamics of inversion-capped marine stratocumulus clouds.

A set of numerical experiments had been performed to examined the role of sea surface temperature, large-scale vertical velocity, wind speed, and vertical wind shear in the formation and the structure of low-level clouds. For a given sea surface and geostrophic wind speed, stratocumulus clouds can grow higher with smaller large-scale subsidence as less dry air entrains into the cloud. Clouds grow higher with higher sea surface temperature for a given geostrophic wind speed and large-scale subsidence as a result of enhanced moist convection. In high wind speeds, the entire cloud deck is lifted up because of larger surface energy flux. In the budget studies of the turbulent kinetic energy (TKE), the buoyancy term is a major source term when the wind speed and the vertical shear are small across the inversion top. When the wind speed and the vertical wind shear across the inversion top become large, the mixed layer is decoupled into a cloud and a subcloud layer. In the TKE budget studies, the shear generation term becomes an important term in the budgets of the TKE and the variance of vertical velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, B. A., Betts, A. K., Schubert, W. A., and Cos, S. K.: 1979, ‘A Model of the Thermodynamic Structure of the Trade-Wind Boyndary Layer. Part I: Theoretical Development and Sensitivity Tests’, J. Atmos. Sci. 36, 73–89.

    Google Scholar 

  • Albrecht, B. A., Penc, R. S., and Schubert, W. H.: 1985, ‘An Observational Study of Cloud-Topped Mixed Layers’, J. Atmos. Soc. 42, 800–822.

    Google Scholar 

  • Ansré, J. C., DeMoor, G., LaCarrere, P., Therry, G., and DuVachat, R.: 1978, ‘Modeling the 24-Hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.

    Google Scholar 

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulent Exchange in Neutral Atmosphere’, J. Geophys. Res. 67, 3095–3102.

    Google Scholar 

  • Brost, R. A., Lenschow, D. H., and Wyngaard, J. C.: 1982a, ‘Marine Stratocumulus Layers. Part I: Mean Conditions’, J. Atmos. Sci. 39, 800–817.

    Google Scholar 

  • Brost, R. A., Wyngaard, J. C., and Lenschow, D. H.: 1982b, ‘Marine Stratocumulus Layers. Part II: Turbulence Budgets’, J. Atmos. Sci. 39, 818–836.

    Google Scholar 

  • Businger, J. A. and Shaw, W. J.: 1984, ‘The Response of the Marine Boundary Layer to Mesoscale Variation in Sea-Surface Temperature’, Dynamics Atmos. Oceans 8, 267–281.

    Google Scholar 

  • Carson, D. J. and Smith, F. B.: 1974, ‘Thermodynamic Model for the Development of a Convectively Unstable Boundary Layer’, Adv. in Geoph. 18A, 111–124.

    Google Scholar 

  • Charnock, H.: 1955, ‘Wind Stress on the Water Surface’, Quart. J. Roy. Meteorol. Soc. 81, 639–640.

    Google Scholar 

  • Deardorff, J. W.: 1976, ‘On the Entrainment Rate of a Stratocumulus-Topped Mixed Layer’, Quart. J. Roy. Meteorol. Soc. 102, 563–582.

    Google Scholar 

  • Deardorff, J. W.: 1980, ‘Stratocumulus-Capped Mixed Layer Derived from a Three-Dimensional Model’, Boundary-Layer Meteorol. 18, 495–527.

    Google Scholar 

  • Hanson, H. P.: 1984, ‘Stratocumulus Instability Reconsidered: A Search for Physical Mechanisms’, Tellus 36A, 355–368.

    Google Scholar 

  • Herman, G. F. and Goody, R. M.: ‘Formation and Persistence of Summertime Arctic Stratus Clouds’, J. Atmos. Sci. 33, 1537–1553.

  • Kahn, P. M. and Businger, J. A.: 1979, ‘The Effect of Radiative Flux Divergence in Entrainment of a Saturated Convective Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 109, 303–305.

    Google Scholar 

  • Kraus, E. B. and Leslie, L. D.: 1982, ‘The Interactive Evolution of the Oceanic and Atmospheric Boundary Layers in the Source Regions of the Trades’, J. Atmos. Sci. 39, 2760–2772.

    Google Scholar 

  • Kraus, H. and Schaller, E.: 1978, ‘Steady-State Characteristics of Inversion Capping a Well-Mixed Planetary Boundary Layer’, Boundary-Layer Meteorol. 14, 83–104.

    Google Scholar 

  • Launder, B. F.: 1975, ‘On the Effects of a Gravitational Field on the Turbulent Transport of Heat Momentum’, J. Fluid Mechanics 67, 569–581.

    Google Scholar 

  • Lilly, D. K.: 1968, ‘Models of Cloud Topped Mixed Layer Under a Strong Inversion’, Quart. J. Roy. Meteorol. Soc. 94, 292–309.

    Google Scholar 

  • Lilly, D. K. and Schullaert, W. H.: 1980, ‘The Effects of Radiative Cooling in a Cloud-Topped Mixed Layer’, J. Atmos. Sci. 37, 482–487.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layer’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Moeng, C. H. and Arakawa, A.: 1980, ‘A Numerical Study of a Marine Subtropical Stratus Cloud Layer and its Stability’, J. Atmos. Sci. 37, 2661–2676.

    Google Scholar 

  • Neiburger, M., Johnson, D. S., and Chein, C. W.: 1961, Studies of the Atmosphere over Eastern Pacific Ocean in Summer. I. The Inversion over the Eastern North Pacific Ocean, University California Press, Los Angeles, 58pp.

    Google Scholar 

  • Nicholls, S.: 1984, ‘The Dynamics of Stratocumulus: Aircraft Observations and Comparisons with a Mixed Layer Model’, Quart. J. Roy. Meteorol. Soc. 110, 783–820.

    Google Scholar 

  • Nicholls, S. and Turton, J. D.: 1986, ‘An Observational Study of the Structure of Stratoform Cloud Sheets. Part II. Entrainment’, Quart. J. Roy. Meteorol. Soc. 112, 461–480.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Businger, J. A.: 1984, ‘Radiative Cooling near the Top of a Cloudy Mixed Layer’, Quart. J. Roy. Meteorol. Soc. 110, 1073–1078.

    Google Scholar 

  • Oliver, D. A., Lewellen, W. S., and Williamson, G. G.: 1978, ‘The Interaction Between Turbulent and Radiative Transport in the Development of Fog and Low-Level Stratus’, J. Atmos. Sci. 35, 301–316.

    Google Scholar 

  • Randall, D. A.: 1980, ‘Entrainment into a Stratocumulus Layer with Distributed Radiative Cooling’, J. Atmos. Sci. 37, 148–159.

    Google Scholar 

  • Randall, D. A.: 1984, ‘Stratocumulus Cloud Deepening through Entrainment’, Tellus 36A, 446–457.

    Google Scholar 

  • Rodgers, C. D.: 1967, ‘The Use of Emissivity in Atmospheric Radiation Calculation’, Quart. J. Roy. Meteorol. Soc. 93, 43–54.

    Google Scholar 

  • Rogers, D. P., Businger, J. A., and Charnock, H.: 1985, ‘A Numerical Investigation of the JASIN Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 32, 373–399.

    Google Scholar 

  • Rogers, D. A. and Telford, J. W.: 1986, ‘Metastable Stratus Tops’, Quart. J. Roy. Meteorol. Soc. 112, 481–500.

    Google Scholar 

  • Rotta, J. C.: 1951, ‘Statistiche Theorie Nichthomogener Turbuleuz’, Z. Phys. 000, 547–572.

    Google Scholar 

  • Schaller, E. and Kraus, H.: 1981, ‘The Role of Radiation in an Inversion-Capped Planetary Boundary Layer. Part I: The need for a Detailed Consideration of Radiative Processes’, Boundary-Layer Meteorol. 20, 485–495.

    Google Scholar 

  • Schubert, W. H., Wakefield, J. S., Steiner, E. J., and Cox, S. K.: 1979, ‘Marine Stratocumulus Convection. Part I: Governing Equations and Horizontally Homogeneous Solutions’, J. Atmos. Sci. 36, 1286–1307.

    Google Scholar 

  • Schubert, W. H.: 1976, ‘Experiments with Lilly's Cloud-Topped Typed Mixed Layer Model’, J. Atmos. Sci. 33, 436–446.

    Google Scholar 

  • Slingo, A., Nicholls, S., and Schmetz, J.: 1982, ‘Aircraft Observations of Marine Stratocumulus during JASIN’, Quart. J. Roy. Meteorol. Soc. 108, 833–856.

    Google Scholar 

  • Stage, S. A. and Businger, J. A.: 1981, ‘A Model for Entrainment into a Cloud-Topped Marine Boundary Layer. Part I: Model Description and Application to a Cold-Air Outbreak Episode’, J. Atmos. Sci. 38, 2213–2229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man-Kui Wai, M. A numerical study of the marine stratocumulus cloud layer. Boundary-Layer Meteorol 40, 241–267 (1987). https://doi.org/10.1007/BF00117450

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117450

Keywords

Navigation