Skip to main content
Log in

Superconductivity of transition metal sulfides, selenides, and phosphides with the NaCl structure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The superconducting properties of transition metal sulfides, selenides, and phosphides having the cubic NaCl structure are described. Binary compounds found to be superconducting are ThS, ScSe, ThSe, HfP, and ThP. More detailed information about the known superconductors Zr1−xS, LuS, Sc1−xS, YS, and ZrP is presented. Transition temperature was established as a function of composition for Zr-S, Sc-S, and Y-S NaCl-structure systems. Superconductivity at high pressure was determined in several systems. Some low-temperature specific heat capacity results, room-temperature magnetic susceptibility, and electrical resistance measurements between 2 K and room temperature are reported. Some information is presented about the rhombohedrally distorted compounds ZrSe and HfS. Results of NaCl-structure solid solution (metal replacement) synthesis (including superconductivity data) are reported for (Zr, Sc)-S, (Zr, Y)-S, (Zr, Ti)-S, (Zr, Hf)-S, (La, Y)-S and (Y, Th)-S. We find that superconductivity occurs generally in these materials, and that these compounds have much in common with the better known NaCl defect structure carbides and nitrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. T. Matthias, Phys. Rev. 92, 874 (1953).

    Google Scholar 

  2. N. Pessall and J. K. Hulm, Physics (Long Island City, NY) 2, 311 (1966).

    Google Scholar 

  3. N. Pessall, R. E. Gold, and H. A. Johansen, J. Phys. Chem. Solids 29, 19 (1968).

    Google Scholar 

  4. G. Aschermann, E. Frederich, E. Justi, and J. Kramer, Phys. Z. 42, 349 (1941).

    Google Scholar 

  5. N. Pessall, J. K. Hulm, and M. S. Walker, Westinghouse Research Laboratories, Final Rept. AF 33(615)-2729 (1967).

  6. A. L. Giorgi, E. G. Szklarz, E. K. Storms, A. L. Bowman, and B. T. Matthias, Phys. Rev. 125, 837 (1962).

    Google Scholar 

  7. R. H. Willens, E. Buehler, and B. T. Matthias, Phys. Rev. 159, 327 (1967).

    Google Scholar 

  8. M. D. Banus, Mat. Res. Bull. 3, 723 (1968).

    Google Scholar 

  9. N. J. Doyle, J. K. Hulm, C. K. Jones, R. C. Miller, and A. Taylor, Phys. Lett. 26A, 604 (1968).

    Google Scholar 

  10. L. E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971), pp. 215–244.

    Google Scholar 

  11. F. J. Ajami and R. K. MacCrone, J. Phys. Chem. Solids 36, 7 (1975).

    Google Scholar 

  12. F. Hulliger and G. W. Hull Jr., Solid State Comm. 8, 1379 (1970).

    Google Scholar 

  13. E. Bucher, A. C. Gossard, K. Andres, J. P. Maita, and A. S. Cooper, in Conference on Rare Earth Research. Proceedings, T. A. Henrie and R. E. Lindstrom, eds. (1970), pp. 74–89.

  14. D. C. Johnston and A. Moodenbaugh, Phys. Lett. 41A, 447 (1972).

    Google Scholar 

  15. A. R. Moodenbaugh, D. C. Johnston, and R. Viswanathan, Mat. Res. Bull. 9, 1671 (1974).

    Google Scholar 

  16. R. P. Steiger and E. D. Cater, High Temp. Sci. 2, 398 (1970).

    Google Scholar 

  17. B. R. Conard and H. F. Franzen, in Chemistry of Extended Defects in Nonmetallic Solids, L. Eyring and M. O'Keefe, eds. (North-Holland, Amsterdam, 1970), pp. 207–219.

    Google Scholar 

  18. B. R. Conard and H. F. Franzen, High Temp. Sci. 3, 49 (1971).

    Google Scholar 

  19. K. Stocks, G. Eulenberger, and H. Hahn, Z. Anorg. Allg. Chem. 374, 318 (1970).

    Google Scholar 

  20. G. W. Webb, Phys. Rev. 181, 1127 (1969).

    Google Scholar 

  21. A. C. Lawson, Superconductivity and Lattice Instabilities of HfV2, Ph.D. Diss., UCSD, La Jolla (1972).

    Google Scholar 

  22. A. Eichler and J. Wittig, Z. Angew. Phys. 25, 319 (1968).

    Google Scholar 

  23. T. F. Smith, J. Low Temp. Phys. 6, 171 (1972).

    Google Scholar 

  24. D. K. Wohlleben and M. B. Maple, Rev. Sci. Instr. 42, 1573 (1971).

    Google Scholar 

  25. R. Viswanathan, in Analytical Calorimetry (Plenum, New York, 1974), Vol. 3, pp. 81–88.

    Google Scholar 

  26. J. F. Cannon, D. L. Robertson, and H. T. Hall, J. Less Common Met. 29, 141 (1972).

    Google Scholar 

  27. H. Hahn, B. Harder, U. Mutschke, and P. Ness, Z. Anorg. Allg. Chem. 292, 82 (1957).

    Google Scholar 

  28. E. F. Strotzer, W. Bilz, and K. Meisel, Z. Anorg. Allg. Chem. 242, 249 (1939).

    Google Scholar 

  29. F. K. McTaggart and A. D. Wadsley, Aust. J. Chem. 11, 445 (1958).

    Google Scholar 

  30. H. M. Kennett and M. L. Rudee, Phil. Mag. 35, 129 (1977).

    Google Scholar 

  31. S. P. Denker, J. Phys. Chem. Solids 25, 1397 (1964).

    Google Scholar 

  32. M. D. Banus and T. B. Reed, in The Chemistry of Extended Defects in Nonmetallic Solids, L. Eyring and M. O'Keefe, eds. (North-Holland, Amsterdam, 1969), pp. 488–522.

    Google Scholar 

  33. E. K. Storms, A. L. Giorgi, and E. G. Sklarz, J. Phys. Chem. Solids 36, 689 (1975).

    Google Scholar 

  34. J. F. Cannon, private communication.

  35. H. F. Franzen and J. Graham, J. Inorg. Nucl. Chem. 28, 377 (1966).

    Google Scholar 

  36. H. Hahn and P. Ness, Z. Anorg. Allg. Chem. 302, 37 (1959).

    Google Scholar 

  37. W. Zachariasen, Acta Crystallogr. 2, 291 (1949).

    Google Scholar 

  38. V. Brozek, J. Flahaut, M. Guittard, M. J. Pouzel, and M.-P. Pardo, Bull. Soc. Chim. Fr. 1974, 1740.

  39. J. Flahaut, M. Guittard, and M. Patrie, Bull. Soc. Chim. Fr. 1958, 990.

  40. M. Guittard, C.R. Hebd. Seances Acad. Sci. 261 (groupe 8), 2109 (1965).

    Google Scholar 

  41. J. Flahaut, M. Guittard, O. Gorochov, and Wintenberger, in Propriétés Thermodynamiques, Physiques, et Structurales des Dérivés Semi-Métalliques (Centre National de la Recherche Scientifique, Paris, 1967), pp. 431–438.

    Google Scholar 

  42. E. Bucher and J. L. Staundenmann, private communication, cited by F. Hulliger, Structure and Bonding 4, 83 (1968).

    Google Scholar 

  43. R. W. M. D'Eye, P. G. Sellman, and J. R. Murray, J. Chem. Soc. 1952, 2555 (1952).

    Google Scholar 

  44. K. A. Gingerich, USAEC Report No. NYO-2541-1 (1964), Study of Transition Metal Phosphides and Related Refractory Materials.

  45. K. S. Irani and K. Gingerich, J. Phys. Chem. Solids 24, 1153 (1963).

    Google Scholar 

  46. W. Jeitschko and H. Nowotny, Monatsh. Chem. 93, 1107 (1962).

    Google Scholar 

  47. T. Lundstrom and P. Tansuriwongs, Acta Chem. Scand. 22, 704 (1968).

    Google Scholar 

  48. K. A. Gingerich and D. W. Wilson, Inorg. Chem. 4, 987 (1965).

    Google Scholar 

  49. C. A. Javorsky and R. Benz, J. Nucl. Mater. 23, 192 (1967).

    Google Scholar 

  50. M. K. Williams, K. M. Ralls, and M. R. Pickus, J. Phys. Chem. Solids 28, 333 (1967).

    Google Scholar 

  51. G. Ghemard and C. Souleau, C.R. Hebd. Seances Acad. Sci. Ser. C 270, 616 (1970).

    Google Scholar 

  52. J. Graham and F. K. McTaggart, Aust. J. Chem. 13, 67 (1960).

    Google Scholar 

  53. P. D. Shalek, J. Am. Ceram. Soc. 46, 155 (1963).

    Google Scholar 

  54. F. A. Shunk, Constitution of Binary Alloys, Second Supplement (McGraw-Hill, New York, 1969).

    Google Scholar 

  55. R. P. Elliot, Constitution of Binary Alloys, First Supplement (McGraw-Hill, New York, 1965).

    Google Scholar 

  56. M. Hansen, Constitution of Binary Alloys (McGraw-Hill, New York, 1958).

    Google Scholar 

  57. W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals, Volume 2 (Pergamon, Oxford, 1967).

    Google Scholar 

  58. W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals (Pergamon, New York, 1958).

    Google Scholar 

  59. F. Hulliger, Structure and Bonding 4, 182–184 (1968).

    Google Scholar 

  60. O. I. Shulishova, Inst. Metallofiziki AN USSR, Kiev (1966), cited in B. W. Roberts, Superconductive Materials and Some of Their Properties, NBS Technical Note 482 (1969).

  61. B. W. fnRoberts, Superconductive Materials and Some of Their Properties, NBS Technical Note 482 (dy1969).

  62. B. W. Roberts, Properties of Some Superconductive Materials, NBS Technical Note 825 (dy1974).

  63. B. W. Roberts, in Progress in Cryogenics Heywood, London, (1964), pp. 159–231.

    Google Scholar 

  64. B. W. Roberts, Superconductive Materials and Some of Their Properties, NBS Technical Note 724 (dy1972).

  65. L. E. Toth, Transition Metal Carbides and Nitrides (Academic, New York, 1971), pp. 217–223.

    Google Scholar 

  66. S. Geller, in Chemical Bonds in Solids, N. N. Sirota, ed. (Consultants Bureau, New York, 1972), Vol. 1, pp. 43–50.

    Google Scholar 

  67. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by Air Force Office of Scientific Research, Air Force Systems Command, USAF, under AFOSR contract #F44620-77-C-0009.

This work includes material from one of the authors' (ARM) Ph.D. Thesis, University of California—San Diego (1975).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moodenbaugh, A.R., Johnston, D.C., Viswanathan, R. et al. Superconductivity of transition metal sulfides, selenides, and phosphides with the NaCl structure. J Low Temp Phys 33, 175–203 (1978). https://doi.org/10.1007/BF00117075

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117075

Keywords

Navigation