Skip to main content
Log in

Rossby similarity and turbulent formulations

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The structure of the Planetary Boundary Layer in the stationary case is investigated. The dynamic equations are written in an universal form deduced from Rossby Similarity. Then the system is closed using two semi-empirical formulations for the turbulent fluxes (Prandtl's formulation and the turbulent energy scheme) with a mixing-length chosen to be compatible with Rossby Similarity. For each formulation the system is solved using a new numerical procedure to compute universal profiles of wind and also the Similarity functions A and B in terms of stability. These profiles and functions are then compared to experimental data and good agreement is obtained. Investigating simpler formulations, it appears that good results are obtained with a simple two-layer model, patching a diabatic Ekman spiral with surface-layer profiles. Its formulation is analytical and it can incorporate constant baroclinicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, W. F.: 1977, Numerical Methods for Partial Differential Equations, Academic Press, New York.

    Google Scholar 

  • André, J. C., De Moor, G., Lacarrère, P., Therry, G., et du Vachat, 1978: ‘Modeling the 24-hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.

    Google Scholar 

  • Arya, S. P. S.: 1975, ‘Geostrophic Drag and Heat Transfer Relations for the Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 101, 147–161.

    Google Scholar 

  • Arya, S. P. S.: 1977, ‘Suggested Revisions to Certain Boundary-Layer Parameterization Schemes Used in Atmospheric Circulation Models’, Monthly Weather Rev. 105, 215–227.

    Google Scholar 

  • Billard, C., André, J. C., and du Vachat, R.: 1981, ‘On the Similarity Functions A and B as Determined from the “Voves” Experiment’, Boundary-Layer Meteorol. 21, 495–507.

    Google Scholar 

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere’, J. Geophys. Res. 67, 3095–3102.

    Google Scholar 

  • Blackadar, A. K.: 1965, ‘A Simplified Two-layer Model of the Baroclinic Neutral Atmospheric Boundary Layer’, Final Rep. AFCRL-65-531, Part III, 49–65, Penn State Univ.

  • Blackadar, A. K. and Tennekes, H.: 1968, ‘Asymptotic Similarity in Neutral Barotropic PBL’, J. Atmos. Sci. 25, 1015–1020.

    Google Scholar 

  • Bobileva, I. M., Zilitinkevich, S. S., and Laikhtman, D. L.: 1965, ‘Turbulent Exchange in the Thermally Stratified Planetary Boundary Layer of Atmosphere’, International Colloquium on Fine Scale Structure of the Atmosphere, Moscow, 1965.

  • Businger, J. A., Wyngaard, J. C., Izumi, and Bradley, E. F.: 1971, ‘Flux-profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Clarke, R. H.: 1970, ‘Observational Studies in the Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 96, 91–114.

    Google Scholar 

  • Clarke, R. H. and Hess, G. D.: 1974, ‘Geostrophic Departure and the Functions A and B of Rossby-number Similarity Theory’, Boundary-Layer Meteor. 7, 267–287.

    Google Scholar 

  • Deardorff, J. W.: 1972, ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’, J. Atmos. Sci. 29, 91–115.

    Google Scholar 

  • Deardorff, J. W.: 1976, ‘Clear and Cloud-capped Mixed Layers — Their Numerical Simulation, Structure and Growth and Parameterization’, Seminars on the Treatment of the Boundary Layer, in ‘Numerical Weather Prediction’, ECMRWF, 234–284.

  • Huang, C. H.: 1974, ‘The Dynamic Atmospheric Structure and the Velocity Defect Profiles in the Boundary Layer of a Neutral Atmosphere’, Boundary-Layer Meteorol. 9, 391–409.

    Google Scholar 

  • Kolmogorov, A. N.: 1942, ‘Equations of Turbulent Motion of an Incompressible Turbulent Fluid’, Izv. Ser. Phys. VI, No. 1–2, p. 56.

  • Mellor, Yamada: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layer’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Musson-Genon, L., du Vachat, R., and De Moor, G.: 1980, ‘Reconstitution des Profils de Vent Universels dans la Couche Limite Planétaire Stationnaire en Utilisant Diverses Fermetures Turbulentes’, Note Technique de l'E.E.R.M.

  • Musson-Genon, L. and du Vachat, R.: 1981, ‘Reconstitution des Profils de Vent et de Température à Partir des Mesures à Deux Niveaux’, La Météorologie, No. 25.

  • Prandtl, L.: 1925, ‘Bericht Über Untersuchungen zur aus Gebildeten Turbulenz’, Zs. angew. Math. Mech. 5, No. 2, 136–139.

    Google Scholar 

  • Priestley, C. H. B.: 1959, ‘Turbulent Transfer in the Lower Atmosphere’, The University of Chicago Press.

  • Rossby, C. G. and Montgomery, R. B.: 1935, ‘The Layers of Frictional Influence in Wind and Ocean Currents’, Pap. Phys. Ocean. Meteorol. MIT and WHOI 3, 101.

    Google Scholar 

  • Vager, B. G.: 1966, ‘The Effect of Turbulent Diffusion in a Semi-empirical Model of the Atmosphere’, Izv. Atmos. Ocean. Phys. 2, 920–927.

    Google Scholar 

  • Wiin-Nielsen, A.: 1974, ‘Vorticity, Divergence and Vertical Velocity in a Baroclinic Boundary Layer with a Linear Variation of the Geostrophic Wind’, Boundary-Layer Meteorol. 6, 459–476.

    Google Scholar 

  • Wipperman, F.: 1971, ‘A Note on a Method for Solving the Planetary Boundary-Layer Equation’, Beitr. Phys. Atm. 44, 293–296.

    Google Scholar 

  • Wipperman, F.: 1972, ‘Universal Profiles in the Barotropic Planetary Boundary Layer’, Beitr. Phys. Atm. 45, 148–163.

    Google Scholar 

  • Wipperman, F.: 1973, ‘Numerical Study of the Effects Controlling the Low Level Jet’, Beitr. Phys. Atm. 46, 137–154.

    Google Scholar 

  • Wipperman, F.: 1974, ‘Properties of the Thermal Boundary Layer of the Atmosphere Obtained with a PBL Model’, Beitr. Phys. Atm. 48, 30–45.

    Google Scholar 

  • Yamada, T.: 1976, ‘On the Similarity Functions A, B, and C of the Planetary Boundary Layer’, J. Atmos. Sci. 33, 781–793.

    Google Scholar 

  • Yordanov, D.: 1974, ‘Parameterization of the Baroclinicity Influence in the Planetary Boundary Layer’, Izv. Atmos. Ocean. Phys. 10, 782–786.

    Google Scholar 

  • Yordanov, D.: 1975, ‘A Simple Baroclinic Model of the Planetary Boundary Layer’, Izv. Atmos. and Ocean. Phys. 11, 630–634.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman Boundary Layer’, Boundary-Layer Meteorol. 3, 141–145.

    Google Scholar 

  • Zilitinkevich, S. S.: 1975, ‘Resistance Laws and Prediction Equations for the Depth of the Planetary Boundary Layer’, J. Atmos. Sci. 32, 741–752.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du Vachat, R., Musson-Genon, L. Rossby similarity and turbulent formulations. Boundary-Layer Meteorol 23, 47–68 (1982). https://doi.org/10.1007/BF00116111

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116111

Keywords

Navigation