Skip to main content
Log in

Shape: Its development and regulation capacity during embryogenesis

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Although several theoretical approaches consider general methods for dealing with shape, recent observations and experimental data show that embryos exhibit marked changes in the properties of the biological material involved in shape development and shape regulation capacity. In vivo experiments have shown that the amphibian embryo gradually develops from a situation in which it is not able to maintain its shape to one in which it can not only maintain its shape but also possesses a maximal tolerance towards deformation together with a maximal shape regulation capacity. So far two especially clear conclusions have emerged: (i) the form of the embryo appears to be determined by cell activities intrinsic to each stage, and (ii) the morphogenetic programme can be executed normally within wide limits notwithstanding dramatic deformations of the embryo during quite a long period. Thus the hypothesis may be advanced that shape and morphogenesis to some extent become independent phenomena during embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ancel, P. & P. Vintemberger (1948). Recherches sur le déterminisme de la symétrie bilatérale dans l'œuf des amphibiens. - Biol. Bull. 31, p. 1–182.

    Google Scholar 

  • Babloyantz, A. & J. Hiernaux (1974). Models for positional information and positional differentiation. - Proc. nat. Acad. Sci., USA 71, p. 1530–1533.

    Google Scholar 

  • Baker, P. C. (1965). Fine structure and morphogenetic movements in the gastrula of the tree frog, Hyla regilla. - J. Cell Biol. 24, p. 95–116.

    Google Scholar 

  • Baker, P. C. & T. E. Schroeder (1967). Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube. - Developm. Biol. 15, p. 432–450.

    Google Scholar 

  • Banerjee, S. D., R. H. Cohn & M. R. Bernfield (1977). Basal lamina of embryonic salivary epithelia. Production by the epithelium and role in maintaining lobular morphology. - J. Cell Biol. 73, p. 445–463.

    Google Scholar 

  • Beloussov, L. V. & J. G. Dorfman (1974). On the mechanics of growth and morphogenesis in hydroid polyps. - Amer. Zool. 14, p. 719–734.

    Google Scholar 

  • Beloussov, L. V., J. G. Dorfman & V. G. Cherdantzev (1975). Mechanical stresses and morphological patterns in amphibian embryos. - J. Embryol. exp. Morph. 34, p. 559–574.

    Google Scholar 

  • Bernfield, M. R., S. D. Banerjee & R. H. Cohn (1972). Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide-protein (proteoglycan) at the epithelial surface. - J. Cell Biol. 52, p. 674–689.

    Google Scholar 

  • Bernfield, M. R., R. H. Cohn & S. D. Banerjee (1973). Glycosaminoglycans and epithelial organ formation. - Amer. Zool. 13, p. 1067–1083.

    Google Scholar 

  • Bhisey, A. N. & J. J. Freed (1975). Possible role of microtubules and microfilaments in cell locomotion. - In: G. P. Talwar, ed., Regulation of growth and differentiation in eukaryote cells, p. 155–168. - New York, Raven Press.

    Google Scholar 

  • Browne, D. A. (1967). Mechanistic interpretation of certain malformation. - In: D. H. M. Woollam, ed., Advances in teratology, vol. 2, p. 11–36. - New York, Logos Press.

    Google Scholar 

  • Burnside, B. (1971). Microtubules and microfilaments in newt neurulation. - Developm. Biol. 26, p. 416–441.

    Google Scholar 

  • Bustuoabad, O. & A. Pisanó (1973). Two different patterns of segmentation in the eggs of Bufo arenarum. -Acta Embryol. Exp. 1, p. 29–46.

    Google Scholar 

  • Byers, B. & K. R. Porter (1974). Oriented microtubules in elongating cells of the developing lens rudiment after induction. - Proc. nat. Acad. Sci., U.S.A. 52, p. 1091–1099.

    Google Scholar 

  • Bytinski-Salz, H. (1938). Chromatophorenstudien. II. Struktur und Determination des adepidermalen Melanophorennetzes bei Bombina. - Arch. exp. Zellforflh. 22, p. 132–170.

    Google Scholar 

  • Clavert, J. (1962). Symmetrization of the egg of vertebrates. - Adv. Morphogen. 2, p. 27–60.

    Google Scholar 

  • Crick, F. (1970). Diffusion in embryogenesis. - Nature, Lond. 225, p. 420–422.

    Google Scholar 

  • Curtis, A. S. G. & G. van de Vyver (1971). The control of cell adhesion in a morphogenetic system. - J. Embryol. exp. Morph. 26, p. 295–312.

    Google Scholar 

  • Del Conte, E. & J. Sirlin (1952). Pattern series of the first embryonary stages in Bufo arenarum, Anat. Rec. 112, p. 125–136.

    Google Scholar 

  • Dunn, P. M. (1976). Congenital postural deformities. - Brit. mod. Bull. 32, p. 71–76.

    Google Scholar 

  • Ebert, J. D. & I. M. Sussex (1970). Interacting systems in development. 2nd ed. - New York, Holt, Rinehart & Winston, x + 338 pp.

    Google Scholar 

  • Edelman, G. M. (1976). Surface modulation in cell recognition and cell growth. - Science 192, p. 218–226.

    Google Scholar 

  • Elsdale, T. & J. Bard (1974). Cellular interactions in morphogenesis of epithelial mesenchymal systems. - Biology 63, p. 343–349.

    Google Scholar 

  • Faber, J. (1976). Positional information in the amphibian limb. - Acta biotheor., Leiden 25, p. 44–65.

    Google Scholar 

  • Fawcett, D. M. & F. Witebsky (1964). Observations on the ultrastructure of nucleated erythrocytes and thrombocytes with particular reference to their difloidal shape. - Z. Zellforflh. mikr. Anat. 61, p. 785.

    Google Scholar 

  • French, V., G. Bryant & S. V. Bryant (1976). Pattern regulation in epimorphic fields. - Science 193, p. 969–981.

    Google Scholar 

  • Gibbins, J. R., L. G. Tilney & K. R. Porter (1969). Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. I. The distribution of microtubules. - J. Cell Biol. 41, p. 201–226.

    Google Scholar 

  • Goodwin, B. C. & M. H. Cohen (1969). A phase shift model for the spatial and temporal organization in developing systems.-J. theor. Biol. 25, p. 49–107.

    Google Scholar 

  • Grobstein, C. & J. Cohen (1965). Collagenase: effect on the morphogenesis of embryonic salivary epithelium in vitro. - Science 150, p. 626–628.

    Google Scholar 

  • Grobstein, C. (1967). Mechanism of organogenetic tissue interactions. - Nat. Cancer Inst. Monogr. 26, p. 279–299.

    Google Scholar 

  • Gustavson, T. & M. I. Tonebey (1971). How genes control morphogenesis. - Amer. Scient. 59, p. 452–462.

    Google Scholar 

  • Gustavson, T. & L. Wolpert (1967). Cellular movement and contact in sea urchin morphogenesis. - Biol. Rev. 42, p. 442–498.

    Google Scholar 

  • Herkovits, J. (1975). Acción de Bromuro de Etidio y del D-Tubocurare en embriones de Bufo arenarum normales y experimentalmente deformados. - Medicina, B. Aires 35, p. 565–566 (abstract).

    Google Scholar 

  • Herkovits, J. (1976a). Microflopia electrónica de membranas pre-existentes y neoformadas durante un proceso de división celular: la segmentación. - Medicina, B. Aires 36, p. 551 (abstract).

    Google Scholar 

  • Herkovits, J. (1976b). Limite de viabilidad de embriones que desorrollan con deformaciones experimentales extremas: Las alteraciones del tejido ectodermico. - Medicina, B. Aires 36, p. 551 (abstract).

    Google Scholar 

  • Herkovits, J. (1977a). Shape regulation capacity during development: Recovery of embryos developing notwithstanding asymmetry until the neurula stage. - Acta Embryol. Exp. 1, p. 3–10.

    Google Scholar 

  • Herkovits, J. (1977b). Control de la morfogenesis durante el desarrollo embrionario de un affibio: I. Deformaciones experimentales hasta neurula. - Rev. del Inst. de Cibernética de la Soc. Cient. Arg. 1, p. 5–15.

    Google Scholar 

  • Herkovits, J. (1977c). Are shape and morphogenesis independent phenomena? - Experientia 33, p. 510–513.

    Google Scholar 

  • Herkovits, J. (1977d). Shape regulation capacity during development: Recovering capacity of embryos developing notwithstanding dramatic deformation. - Acta morph. neerl. fland. 16, p. 69–75.

    Google Scholar 

  • Herkovits, J. (1977e). Capacidad de recuperación de embriones deformados experimentalmente: etapas de la organogenesis. - Medicina, B. Aires 38, p. 60–68.

    Google Scholar 

  • Herkovits, J., A. Pisanó & A. F. de Herkovits (1975). Alteraciones en el desarrollo embrionario y en procesos de recuperación morfológica por acción del agua pesada. - Rev. Biol. Med. Nucl. 7, p. 161–162. (abstract).

    Google Scholar 

  • Herkovits, J., O. Bustuoabad & A. Pisanó (1977). The spatial and temporal pattern of cell activities in the blastocoel cavity of amphibian embryos during archenteron floor descent. - Acta Embryol. Exp. 2, p. 195–205.

    Google Scholar 

  • Holtfreter, J. (1944). A study of the mechanics of gastrulation: part 2. - J. exp. Zool. 95, p. 171–212.

    Google Scholar 

  • Karfunkel, P. (1971). The role of microtubules and microfilaments in neurulation in Xenopus. - Developm. Biol. 25, p. 30–56.

    Google Scholar 

  • Kemp, N. E. (1959). Development of the basement lamella of larval anuran skin. - Developm. Biol. 1, p. 459–476.

    Google Scholar 

  • Klug, A. & D. L. Caspar (1960). The structure of small viruses. - Adv. Virus Res. 7, p. 225–246.

    Google Scholar 

  • Lash, J. (1974). Tissue interactions and related subjects. - In: J. Lash & J. R. Whittaker, ed., Concepts of development, p. 197–212. - Stamford, Conn., Sinauer Ass.

    Google Scholar 

  • Lawrence, B. A. (1971). Control mechanisms of growth and differentiation. - Symp. Soc. exp. Biol. 25, p. 379–390.

    Google Scholar 

  • Luck, H. B. (1975). Elementary behavioral rules as a foundation for morphogenesis. - J. theor. Biol. 54, p. 23–34.

    Google Scholar 

  • Martinez, H. M. (1972). Morphogenesis and chemical dissipative structures. A computer simulated case study. - J. theor. Biol. 36, p. 479–501.

    Google Scholar 

  • Martinov, L. A. (1975). A morphogenetic mechanism involving instability of initial form. - J. theor. Biol. 52, p. 471–480.

    Google Scholar 

  • Mather, K. (1953). Genetical control of stability in development. - Heredity 7, p. 297–336.

    Google Scholar 

  • Moflona, A. A. (1965). Recombination of dissociated cells and the development of cell aggregates. - In: E. N. Willmer, ed., Cells and tissues in culture, vol. I, p. 489–529. - New York, Acad. Press.

    Google Scholar 

  • Moflona, A. A. (1968). Cell aggregation properties of specific cell ligands and their role in the formation of multicellular systems. - Developm. Biol. 18, p. 250–277.

    Google Scholar 

  • Nakatsuji, N. (1975). Studies on the gastrulation in amphibian embryos: light and electron microscopic observation of a urodele Cynopus pyrrhogaster. - J. Embryol. exp. Morph. 34, p. 669–685.

    Google Scholar 

  • Overton, J. (1976). Scanning microscopy of collagen in the basement lamella of normal and regenerating frog tadpoles. - J. Morph. 150, p. 805–824.

    Google Scholar 

  • Perry, M. M. (1975). Microfilaments in the external surface layer of the early amphibian embryo. - J. Embryol. exp. Morph. 33, p. 127–146.

    Google Scholar 

  • Perry, M. M. & C. H. Waddington (1966). Ultrastructure of the blastopore cells in the newt. - J. Embryol. exp. Morph. 15, p. 317–330.

    Google Scholar 

  • Porter, K. R. (1966). Cytoplasmic microtubules and their function. - In: G. E. W. Wolstenholme & M. O'Conner, ed., Principles of biomolecular organization. - London, Churchill, 308 pp.

    Google Scholar 

  • Reeve, E. C. R. & F. W. Robertson (1952). Studies in quantitative inheritance. II. Analysis of a strain of Drosophila melanogaster selected for long wings. - J. Genet. 51, p. 276–316.

    Google Scholar 

  • Roth, S., E. J. McGuire & S. Rosman (1971). Evidence for cell surface glycosyltransferases: their potential role in cellular recognition. - J. Cell Biol. 51, p. 536–547.

    Google Scholar 

  • Rutishauser, V., J. P. Thiery, R. Brackenbury, Sela Ben-ami & G. M. Edelman (1976). Mechanism of adhesion among cells from neural tissues of the chick embryo. - Proc. nat. Acad. Sci., U.S.A. 73, p. 577–581.

    Google Scholar 

  • Schulman, L. S. (1976). Stable generation of simple forms. - J. theor. Biol. 57, p. 453–468.

    Google Scholar 

  • Shur, B. D. (1977). Cell-surface glycosyltransferases in gastrulating chick embryos. I. Temporally and spatially specific patterns of four endogenous glycosyl-transferase activities. - Developm. Biol. 58, p. 23–39.

    Google Scholar 

  • Spooner, B. S. (1974). Morphogenesis of vertebrate organs. - In: J. Lash & J. R. Whittaker, ed., Concepts of development, p. 213–241. - Stamford, Conn., Sinauer Ass.

    Google Scholar 

  • Spooner, B. S. & N. K. Wessells (1972). An analysis of salivary gland morphogenesis: role of cytoplasmic microfilaments and microtubules. - Developm. Biol. 27, p. 38–54.

    Google Scholar 

  • Steinberg, M. S. (1964). The problem of adhesive selectivity in cellular interactions. - In: M. Locke, ed., Cellular membranes in development, p. 321–366. - New York, Acad. Press.

    Google Scholar 

  • Steinberg, M. S. (1970). Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations among populations of embryonic cells. - J. exp. Zool. 173, p. 395–434.

    Google Scholar 

  • Steinberg, M. S. (1975). Adhesion-guided multicellular assembly: a commentary upon the postulates, real and imagined, of the differential adhesion hypothesis, with special attention to computer simulations of cell sorting. - J. theor. Biol. 55, p. 431–443.

    Google Scholar 

  • Stumpf, H. (1967). About the model of a concentration gradient in the insect segment. - Naturwissenflhaften 54, p. 50–51.

    Google Scholar 

  • Summerbell, D. & L. Wolpert (1973). Precision of development in chick limb morphogenesis. - Nature, Lond. 224, p. 228–230.

    Google Scholar 

  • Thom, R. (1972). Stabilité structurelle et morphogenèse. Essai d'une théorie generale des modèles. - Reading, Mass., W. A. Benjamin, 362 pp.

    Google Scholar 

  • Tilney, L. G. & J. R. Gibbins (1969). Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. An experimental analysis of their role in development and maintenance of cell shape. - J. Cell Biol. 41, p. 227–250.

    Google Scholar 

  • Townes, P. L. & J. Holtfreter (1955). Directed movements and relative adhesion of embryonic amphibian cells. - J. exp. Zool. 128, p. 53–118.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. - Phil. Trans. R. Soc. B237, p. 37–72.

    Google Scholar 

  • Ubbels, G. A., R. T. M. Hengst & J. Klag (1975). Cytoplasmic segregation during the symmetrisation of the anuran egg. - Acta morph. neerl. fland. 13, p. 3–4 (abstract).

    Google Scholar 

  • Weiss, P. (1957). Macromolecular fabrics and pattern. - J. cell. comp. Physiol. 49, p. 105–112.

    Google Scholar 

  • Weiss, P. (1968). Cell contact. - In: Dynamics of development: Experiments and inferences. Selected papers on developmental biology, p. 343–372. - New York, Acad. Press.

    Google Scholar 

  • Wessells, N. K. (1970). Mammalian lung development: interactions in formation and morphogenesis of tracheal buds. - J. exp. Zool. 175, p. 455–466.

    Google Scholar 

  • Wessells, N. K., B. S. Spooner, J. F. Ash, M. O. Bradley, M. A. Ludueňa, E. L. Taylor, J. T. Wrenn & K. M. Yamada (1971). Microfilaments in cellular and developmental processes. - Science 171, p. 135–143.

    Google Scholar 

  • Wilson, H. V. (1907). On some phenomena of coaleflence and regeneration in sponges. - J. exp. Zool. 5, p. 245–258.

    Google Scholar 

  • Wolf, K. L. & D. Kuhn (1969). Forma y simetria. -Ed. Editorial Universitaria de Buenos Aires, p. 7–55.

  • Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. - J. theor. Biol. 25, p. 1–47.

    Google Scholar 

  • Wolpert, L. (1971). Positional information and pattern formation. - Curr. Topics developm. Biol. 6, p. 183–224.

    Google Scholar 

  • Wrenn, J. T. & N. K. Wessells (1969). An ultrastructural study of lens invagination in the mouse. - J. exp. Zool. 171, p. 359–368.

    Google Scholar 

  • Yamada, K. M., B. S. Spooner & N. K. Wessells (1970). Axon growth: roles of microfilaments and microtubules. - Proc. nat. Acad. Sci., U.S.A. 66, p. 1206–1212.

    Google Scholar 

  • Yamada, K. M., B. S. Spooner & N. K. Wessells (1971). Ultrastructure and function of growth cones and axons of cultured nerve cells. - J. Cell Biol. 49, p. 614–635.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fellow of the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET, Argentina).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herkovits, J., Faber, J. Shape: Its development and regulation capacity during embryogenesis. Acta Biotheor 27, 185–200 (1978). https://doi.org/10.1007/BF00115833

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115833

Keywords

Navigation