Skip to main content
Log in

Thermal conductance of metal interfaces at low temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

In the present work the dependence of the heat transfer coefficient between Cu and Sn, Cu and Pb, and Cu and W on the temperature and an external magnetic field has been measured. The preparation of the metal-metal junctions has been performed by melting so that a close contact at the interface was guaranteed. The heat transfer coefficient has been found by a steady-state measuring method. In the case of the Cu-Pb junction the heat transfer coefficient could be measured both in the superconducting and normal states. For all the metal—metal junctions in the normal state a linear temperature dependence of the heat transfer coefficients on the temperature has been found. In the superconducting state a strong reduction of the heat transfer coefficient has been observed. In addition, a theoretical calculation of the heat transfer coefficient on metal-metal interfaces is given. First we consider the scattering of electrons on a steplike potential barrier between two gases of free electrons. Then the thermal conductance due to scattering in an alloy layer is calculated. Such an alloy layer may arise from diffusion during the contact preparation. Comparison of these two cases with the experiments shows the thermal conductance at the interface is mainly determined by the electron scattering on lattice irregularities in the diffusion layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Kapitza, J. Phys. (USSR) 4, 181 (1941).

    Google Scholar 

  2. I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 22, 687 (1972).

    Google Scholar 

  3. W. A. Little, Can. J. Phys. 37, 334 (1959).

    Google Scholar 

  4. D. A. Neeper and J. R. Dillinger, Phys. Rev. 135A, 1028 (1964).

    Google Scholar 

  5. M. W. Wolfmeyer, G. I. Fox, and J. R. Dillinger, Phys. Lett. 31A, 401 (1970).

    Google Scholar 

  6. R. J. von Gutfeld, A. H. Nethercot, and J. A. Armstrong, Phys. Rev. 142, 436 (1966).

    Google Scholar 

  7. L. J. Barnes and J. R. Dillinger, Phys. Rev. 141, 615 (1966).

    Google Scholar 

  8. L. J. Challis and J. D. N. Cheeke, Proc. Phys. Soc. 83, 109 (1964).

    Google Scholar 

  9. E. Mrosan and G. Lehmann, Phys. Stat. Sol. (b) 7, 607 (1976).

    Google Scholar 

  10. E. Mrosan and G. Lehmann, Phys. Stat. Sol. (b) 78, 159 (1976).

    Google Scholar 

  11. E. Mrosan and G. Lehmann, Phys. Stat. Sol. (b) 77, K161 (1976).

    Google Scholar 

  12. J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, London, 1972).

    Google Scholar 

  13. G. Paasch, H. Eschrig, and W. John, Phys. Stat. Sol. (b) 51, 295 (1972).

    Google Scholar 

  14. G. Paasch and M. Hietschold, Phys. Stat. Sol. (b) 67, 743 (1975).

    Google Scholar 

  15. M. Hietschold, G. Paasch, and P. Ziesche, Phys. Stat. Sol. (b) 70, 653 (1975).

    Google Scholar 

  16. I. M. Lifshitz, M. J. Azbel, and M. I. Kaganov, Etectronnaya Teoriya Metallov (Nauka, Moscow, 1972).

    Google Scholar 

  17. K. Mendelssohn and H. M. Rosenberg, in Solid State Physics, Vol. 12 (Academic Press, New York, 1961), p. 223.

    Google Scholar 

  18. Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik (Springer-Verlag, 1959), Band II, Teil 6, pp. 14, 18, 22.

  19. M. P. Malkov, I. B. Danilow, A. G. Zel'dovich, and A. B. Fradkov, Spravochnik po fiziko-tekhnicheskim osnovam kriogeniki (Energiya, Moscow, 1973), p. 133.

    Google Scholar 

  20. J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113, 982 (1959).

    Google Scholar 

  21. S. Strässler and P. Wyder, Phys. Rev. Lett. 10, 225 (196).

    Google Scholar 

  22. E. E. Ramos and D. H. Sanchez, Cryogenics 14, 340 (1974).

    Google Scholar 

  23. H. Montgomery, Proc. Roy. Soc.(A) 244, 85 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumann, B., Nitsche, F. & Paasch, G. Thermal conductance of metal interfaces at low temperatures. J Low Temp Phys 38, 167–189 (1980). https://doi.org/10.1007/BF00115274

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115274

Keywords

Navigation