Skip to main content
Log in

In-cloud scavenging of gases and aerosols at a mountain site in Central Switzerland

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

An in-cloud scavenging case study of the major ions (NH4 +, SO4 2- and NO3 -) determining the cloudwater composition at a mountain site (1620 m.a.s.l.) is presented. A comparison between in-cloud measurements of the cloudwater composition, liquid water content, gas concentrations and aerosol concentrations and pre-cloud gas and aerosol concentrations yields the following results. Cloudwater concentrations resulted from scavenging of about half of the available NH3, aerosol NH4 +, aerosol NO3 -, and aerosol SO4 2-. Approximately a third of the SO2 was scavenged by the cloudwater and oxidized to SO4 2-. Cloud acidity during the first two hours of cloud interception (pH 3.24) was determined mostly by the scavenged gases (NH3, SO2, and HNO3); aerosol contributions to the acidity were found to be small. Observations of gas and aerosol concentrations at three elevations prior to several winter precipitation events indicated that NH3 concentrations are typically half (12–80 %) of the total (gas and aerosol) N (-III) concentrations. HNO3 typically is present at much lower concentrations (1–55 %) than aerosol NO3 -. Concentrations of SO2 are a substantial component of total sulfur, with concentrations averaging 60 % (14–76 %) of the total S (IV and VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anlauf K. G., Mac Tavish D. C., Wiebe H. A., Schiff H. I., and G. I. Mackay (1988) ‘Measurements of atmospheric nitric acid by the filter method and comparisons with the tuneable diode laser and other methods,’ Atmos. Environ., 22, 1579–1586.

    Article  Google Scholar 

  • Brinkten H. M., Schwartz S. E., and Daum P. H. (1987) ‘Efficient scavenging of aerosol sulfate by liquid-water clouds,’ Atmosph. Environ., 21, 2035–2052.

    Article  Google Scholar 

  • Collett J. L.Jr., Daube B. C.Jr., and Hoffmann M. R. (1990) ‘The chemical composition of intercepted cloudwater in the Sierra Nevada,’ Atmos. Environ., 24A, 959–972.

    Article  Google Scholar 

  • Collett J. L.Jr., Prévot A. S. H., Stachelin J. and Waldvogel A (1991) ‘Physical factors influencing winter precipitation chemistry,’ Environ. Sci. Techn., 25, 782–788.

    Article  Google Scholar 

  • Ferm M., (1979) ‘Method for determination of atmospheric ammonia,’ Atmosph. Environ., 13, 1385–1393.

    Article  Google Scholar 

  • Gerber H., (1989) ‘Measurement of suspended particulate volume and far-infrared extinction coefficient with a new laser-diffraction instrument,’ J. Aerosol Sci., 20, 1533–1536.

    Article  Google Scholar 

  • Haltiner G. J., Martin F. L. (1957) Dynamical and Physical Meteorology, McGraw Hill, New York, pp 33–35.

    Google Scholar 

  • Lewin E. E., De Pena R. G., and Shimshock J. P. ‘Atmospheric gas and particle measurements at a rural northeastern U.S. site’, Atmosph. Environ., 20, 59–70.

  • Liljequist G. H. (1974) Allgemeine Meteorologie, Vieweg+Sohn, Braunschweig, pp 107–108.

    Book  Google Scholar 

  • Niessner R., Malejezyk M., Schilling M., and Klockow D., (1987) ‘Die Diffusion als Probenahmeprinzip zur Gas/partikel-Trennung’, VDI-Berichte, 608, 153–180.

    Google Scholar 

  • Rosenberg C., Winiwarter W., Gregori M., Pech G., Casensky V., and H. Puxbaum (1988) ‘Determination of inorganic volatile acids, NH3, particulate SO4 2-, NO3 - and Cl- in ambient air with an annular diffusion denuder system’, Analytische Chemie.

  • Schumann T., Zinder B., and A. Waldvogel (1988) ‘Aerosol and hydrometeor concentrations and their chemical composition during winter precipitation along a mountain slope-1. Temporal evolution of the aerosol, microphysical and meteorological conditions’, Atmos, Environ., 22, 1443–1459.

    Article  Google Scholar 

  • Schumann T. (1990) ‘On the use of a modified clean room optical particle counter for atmospheric aerosols at high relative humidity’, Atmos. Res., 25, 499–520.

    Article  Google Scholar 

  • Schumann T. (1991) ‘Aerosol and hydrometeor concentrations and their chemical composition during winter precipitation along a mountain slope—III. Size-differentiated in-cloud scavenging efficiencies’, Atmos. Environ., 25A, 809–824.

    Article  Google Scholar 

  • Slanina J., v. Lamoen-Doomenbal L., Lingerak W. A., and Meilof W., (1981) ‘Application of a thermo-denuder analyzer to the determination of H2SO4, HNO3 and NH3 in air’, Intern. J. Environ. Anal. Chem., 9, 59–70.

    Article  Google Scholar 

  • Valente R. J., Mallant R. K. A. M., McLaren S. E., Schemenauer R. S., Stogner R. E. (1989) ‘Field intercomparison of ground-based cloud physics instruments at Whitetop Mountain, Virginia’, J. Atmos. Oceanic Technol., 6, 396–406.

    Article  Google Scholar 

  • Weast R. C. (1984) Handbook of Chemistry and Physics, 64-th edition, Chemical Rubber Company, Ohio.

    Google Scholar 

  • Zinder B., Schumann T., and A. Waldvogel, (1988) ‘Aerosol and hydrometeor concentrations and their chemical composition during winter precipitation along a mountain slope-II. Enhancement of below cloud scavenging in a stably stratified atmosphere’, Atmos. Environ., 22, 2741–2750.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberholzer, B., Collett, J.L., Staehelin, J. et al. In-cloud scavenging of gases and aerosols at a mountain site in Central Switzerland. J Atmos Chem 14, 61–71 (1992). https://doi.org/10.1007/BF00115223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115223

Keywords

Navigation