Skip to main content
Log in

Observations of quantized vorticity generated in superfluid 4He flow through 2-Μm-diameter orifices

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A beam of charged vortex rings is used to study the vorticity present downstream from an array of 2-Μm-diameter orifices through which a steady flow of superfluid 4He is driven at known velocity and pressure head δp. From the measured attentuation of the beam at low δp, we infer a density of vortex line less than predicted by the Feynman critical velocity model. Possible explanations are considered. We find evidence that an interconnected tangle of vortices is formed above a certain value of δp, which is in reasonable agreement with theory, at least for one orifice plate. Charge transfer and transient attenuation measurements indicate that this tangle decays in part into small vortex rings. These results are compared with an earlier experiment of Gamota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Feynman, in Progress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam, 1957), Vol. 1 Chap. 2.

    Google Scholar 

  2. S. J. Putterman, Superfluid Hydrodynamics (North-Holland, Amsterdam, 1974), Chap. 6; W. E. Keller, Helium-3 and Helium-4 (Plenum Press, New York, 1969), Chap. 8; V. P. Peshkov, in Progress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam, 1964), Vol. 4, Chap. 1 ; K. R. Atkins, Liquid Helium (Cambridge University Press, Cambridge, 1959), Chap. 4.

    Google Scholar 

  3. G. Gamota, Phys. Rev. Lett. 31, 517 (1973).

    Google Scholar 

  4. G. Careri, M. Cerdonio, and F. Dupre, Phys. Rev. 167, 233 (1968).

    Google Scholar 

  5. W. F. Vinen, Proc. Roy. Soc. A 240, 114, 128 (1957); M. Vicentini-Missoni and S. Cunsolo, Phys. Rev. 144, 196 (1966); D. M. Sitton and F. Moss, Phys. Rev. Lett. 29, 542 (1972); H. Hoch, L. Busse, and F. Moss, Phys. Rev. Lett. 34, 384 (1974); J. Mantese, G. Bischoff, and F. Moss, Phys. Rev. Lett. 39, 565 (1977); R. A. Ashton and J. A. Northby, Phys. Rev. Lett. 30, 1119 (1973); R. A. Ashton and J. A. Northby, Phys. Rev. Lett. 35, 1714 (1975); H. C. Kramers, T. M. Wiarda, and G. van der Heijden, Physica 69, 245 (1973); M. W. Cromar, P. Kittel, and R. J. Donnelly, private communication.

    Google Scholar 

  6. K. W. Schwarz, Phys. Rev. 165, 323 (1968).

    Google Scholar 

  7. G. Gamota and T. M. Sanders Jr., Phys. Rev. Lett. 21, 200 (1968).

    Google Scholar 

  8. P. W. Anderson, Rev. Mod. Phys. 38, 298 (1966).

    Google Scholar 

  9. E. R. Huggins, Phys. Rev. A 1, 332 (1970).

    Google Scholar 

  10. P. H. Roberts and R. J. Donnelly, Phys. Rev. Lett. 24, 367 (1970).

    Google Scholar 

  11. S. V. Iordanskii, Zh. Eksp. Teor. Fiz. 48, 708 (1965) [Sov. Phys.—JETP 21, 467 (1965)]; J. S. Langer and M. E. Fisher, Phys. Rev. Lett. 19, 560 (dy1967); J. S. Langer and J. D. Reppy, in Progress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam, 1970), Vol. 6, Chap. 1.

    Google Scholar 

  12. W. I. Glaberson and R. J. Donnelly, Phys. Rev. 141, 208 (1966).

    Google Scholar 

  13. G. B. Hess, in Low Temperature Physics—LF13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum Press, New York, 1974), Vol. 1, p. 302.

    Google Scholar 

  14. F. A. Blood, Phys. Fluids 19, 179 (1976).

    Google Scholar 

  15. A. Walraven, Phys. Rev. A 1, 145 (1970); L. J. Campbell, J. Low Temp. Phys. 3, 175 (1970); G. E. Watson, J. Low Temp. Phys. 31, 297 (1978); E. I. Blount and C. M. Varma, Phys. Rev. B 14, 2888 (1976); T. Miloh and D. J. Shlien, Phys. Fluids 20, 1219 (1977). D. J. Shlien, Phys. Fluids 20, 1219 (1977).

    Google Scholar 

  16. K. W. Schwarz, Phys. Rev. 165, 323 (1968).

    Google Scholar 

  17. R. A. Staas and A. P. Severijns, Cryogenics 9, 422 (1969); H. E. Corke and A. F. Hildebrandt, Phys. Rev. A 2, 1492 (1970); J. S. Rosenshein, J. Taube, and J. A. Titus, Phys. Rev. Lett. 26, 298 (1971).

    Google Scholar 

  18. G. B. Hess, Phys. Lett. 41 A, 275 (1972).

    Google Scholar 

  19. G. L. Schofield Jr., Ph.D. thesis, University of Michigan (1971), unpublished.

  20. J. P. Hulin, D. D'Humieres, B. Perrin, and A. Libchaber, Phys. Rev. A 9, 885 (1974).

    Google Scholar 

  21. B. M. Khorana, Phys. Rev. 185, 299 (1969); P. L. Richards, Phys. Rev. A 2, 1532 (1970); J. P. Hulin, C. Laroche, A. Libchaber, and B. Perrin, Phys. Rev. A 5, 1830 (1972); P. Leiderer and F. Pobell, Phys. Rev. A 7, 1130 (1973); G. B. Hess, Phys. Rev. Lett. 27, 977 (1971).

    Google Scholar 

  22. J. C. Brown, M. S. thesis, University of Virginia (1975), unpublished.

  23. M. E. Banton, J. Low Temp. Phys. 16, 211 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by the National Science Foundation under grant DMR 72-02971.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guenin, B.M., Hess, G.B. Observations of quantized vorticity generated in superfluid 4He flow through 2-Μm-diameter orifices. J Low Temp Phys 33, 243–254 (1978). https://doi.org/10.1007/BF00114997

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114997

Keywords

Navigation