Skip to main content
Log in

A de Haas-van Alphen study of niobium: Fermi surface, cyclotron effective masses, and magnetic breakdown effects

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The Fermi surface of niobium has been investigated using the de Haas-van Alphen effect. Data were taken at temperatures as low as 0.3 K and in fields as high as 130 kG. An on-line minicomputer was used to Fourier-transform the digitized signals. Many new extremal area data have been obtained, including oscillations associated with the previously unobserved γ-centered hole octahedron and γ and N-centered orbits on the so-called jungle gym. An additional set of signals has been observed near [100], which are thought to be a result of magnetic breakdown between the second zone octahedron and third zone jungle gym. A separate low-frequency signal was observed and is believed to be a result of magnetic-breakdown-induced quantum interference oscillations. Anisotropies of the cyclotron effective mass have been determined for many orbits on all three of the Fermi surface sheets. Finally, the area data have been used to parametrize the Fermi surface in terms of scattering phase shifts in a Korringa-Kohn-Rostoker band structure formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. K. Finnemore, T. F. Stromberg, and C. A. Swenson, Phys. Rev. 149, 231 (1966).

    Google Scholar 

  2. V. Novotny and P. P. M. Meincke, J. Low Temp. Phys. 18, 147 (1975).

    Google Scholar 

  3. W. L. McMillan, Phys. Rev. 163, 331 (1968).

    Google Scholar 

  4. P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

    Google Scholar 

  5. B. L. Gyorffy, to be published.

  6. B. M. Klein and D. A. Papaconstantopoulos, Phys. Rev. Lett. 32, 1193 (1974); J. Phys. F: Metal Phys. 6, 1135 (1976).

    Google Scholar 

  7. R. Evans, G. D. Gaspari, and B. L. Gyorffy, J. Phys. F: Metal Phys. 3, 39 (1973).

    Google Scholar 

  8. G. D. Gaspari and B. L. Gyorfry, Phys. Rev. Lett. 28, 801 (1972).

    Google Scholar 

  9. B. N. Harmon and S. K. Sinha, Bull. Am. Phys. Soc. 22, 262 (1977); B. N. Harmon and S. K. Sinha, to be published.

    Google Scholar 

  10. W. H. Butler and P. B. Allen, Second Rochester Conference on d- and f-Band Superconductors (1976).

  11. W. H. Butler, J. J. Olson, J. S. Faulkner, and B. L. Gyorffy, to be published.

  12. L. L. Boyer, D. A. Papaconstantopoulos, and B. M. Klein, Phys. Rev. B 15, 3685 (1977).

    Google Scholar 

  13. G. B. Scott and M. Springford, Proc. Roy. Soc. Lond. A 320, 115 (1970).

    Google Scholar 

  14. M. H. Halloran, J. H. Condon, J. E. Graebner, J. E. Kunzler, and F. S. L. Hsu, Phys. Rev. B 1, 366 (1970).

    Google Scholar 

  15. L. F. Mattheiss, Phys. Rev. 139, A1893 (1965).

    Google Scholar 

  16. L. F. Mattheiss, Phys. Rev. B 1, 373 (1970).

    Google Scholar 

  17. R. A. Deegan and W. D. Twose, Phys. Rev. 164, 993 (1967).

    Google Scholar 

  18. R. N. Euwema, Phys. Rev. B 4, 4432 (1971).

    Google Scholar 

  19. J. R. Anderson, D. A. Papaconstantopoulos, J. W. McCaffrey, and J. E. Schirber, Phys. Rev. B 7, 5115 (1973).

    Google Scholar 

  20. N. Elyashar and D. D. Koelling, Phys. Rev. B 13, 5362 (1976).

    Google Scholar 

  21. N. Elyashar and D. D. Koelling, Phys. Rev. B 15, 3620 (1977).

    Google Scholar 

  22. N. Elyashar, Ph.D. Thesis, University of Illinois at Chicago (1975). Available from University Microfilms, Ann Arbor, Michigan.

    Google Scholar 

  23. S. Wakoh, Y. Kubo, and J. Yamashita, J. Phys. Soc. Japan 38, 416 (1975).

    Google Scholar 

  24. G. S. Painter, J. S. Faulkner, and G. M. Stocks, Phys. Rev. B 9, 2448 (1974).

    Google Scholar 

  25. J. B. Ketterson, D. D. Koelling, J. C. Shaw, and L. R. Windmiller, Phys. Rev. B 11, 1447 (1975).

    Google Scholar 

  26. J. A. Hoekstra and J. L. Stanford, Phys. Rev. B 8, 1416 (1973).

    Google Scholar 

  27. A. G. Thornsen and T. G. Berlincourt, Phys. Rev. Lett. 7, 244 (1961).

    Google Scholar 

  28. E. Fawcett, W. A. Reed, and R. R. Soden, Phys. Rev. 159, 533 (1967).

    Google Scholar 

  29. W. A. Reed and R. R. Soden, Phys. Rev. 173, 677 (1968).

    Google Scholar 

  30. G. W. Mellors and S. Senderoff, J. Electrochem. Soc. 112, 226 (1965).

    Google Scholar 

  31. R. W. Meyerhoff, J. Electrochem. Soc. 118, 997 (1971).

    Google Scholar 

  32. D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. Lond. A 281, 62 (1964).

    Google Scholar 

  33. R. W. Stark and L. R. Windmiller, Cryogenics 8, 272 (1968).

    Google Scholar 

  34. L. R. Windmiller and J. B. Ketterson, Rev. Sci. Instr. 39, 1672 (1968).

    Google Scholar 

  35. L. R. Windmiller, J. B. Ketterson, and J. C. Shaw, ANL Report 7907 (1972).

  36. J. W. Cooley and J. W. Tukey, Math. Comput. 19, 297 (1965).

    Google Scholar 

  37. O. V. Lounasmaa, Experimental Principles and Methods below 1 K (Academic Press, 1974), p. 246.

  38. T. R. Roberts and S. G. Sydoriak, Phys. Rev. 102, 304 (1956).

    Google Scholar 

  39. I. M. Lifshitz and A. M. Kosevich, Zh. Eksp. Teor. Fiz. 29, 730 (1955).

    Google Scholar 

  40. R. A. Phillips, U.S. AEC Report No. IS-T-170 (1967).

  41. R. W. Stark and C. B. Friedberg, Phys. Rev. Lett. 26, 556 (1971).

    Google Scholar 

  42. R. W. Stark and C. B. Friedberg, J. Low Temp. Phys. 14, 111 (1974).

    Google Scholar 

  43. L. M. Falicov and H. Stachowiak, Phys. Rev. 147, 505 (1966).

    Google Scholar 

  44. J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge Univ. Press, 1972).

  45. B. Bosacchi, J. B. Ketterson, and L. R. Windmiller, Phys. Rev. B 4, 1197 (1971).

    Google Scholar 

  46. D. J. Roaf, Phil. Trans. Roy. Soc. Lond. A 255, 135 (1962).

    Google Scholar 

  47. M. R. Halse, Phil. Trans. Roy. Soc. Lond. A 265, 507 (1969).

    Google Scholar 

  48. I. M. Lifshiftz and A. V. Pogorelov, Dokl. Akad. Nauk. SSSR 96, 1145 (1954) [Sov. Phys.—JETP 2, 636 (1956)].

    Google Scholar 

  49. F. M. Mueller, Phys. Rev. 148, 636 (1966).

    Google Scholar 

  50. B. Segall and F. J. Ham, Methods Comp. Phys. 8, 251 (1968).

    Google Scholar 

  51. J. C. Slater, Phys. Rev. 51, 846 (1937).

    Google Scholar 

  52. J. Korringa, Physica (Utr.) 13, 392 (1947).

    Google Scholar 

  53. W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).

    Google Scholar 

  54. J. C. Shaw, J. B. Ketterson, and L. R. Windmiller, Phys. Rev. B 5, 3894 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed under the auspices of the U.S. Energy Research and Development Administration and the National Science Foundation under Grant DMR-74-12186.

Supported in part by a stipend from the Argonne Center for Educational Affairs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, D.P., Ketterson, J.B. & Crabtree, G.W. A de Haas-van Alphen study of niobium: Fermi surface, cyclotron effective masses, and magnetic breakdown effects. J Low Temp Phys 30, 389–423 (1978). https://doi.org/10.1007/BF00114959

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114959

Keywords

Navigation