Skip to main content
Log in

Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Nanograde calcium phosphate needle-like crystals are prepared from wet synthesized Ca−P precipitates by simple hydrothermal treatment at 140°C and 0.3 MPa for 2 h. The morphology of these crystals is observed by transmission electron microscopy (TEM). The phase composition is tested through X-ray diffractometer (XRD) and infrared spectroscopy (IR). It is found that the morphology of these crystals is related to the activity or fresh degree of the starting Ca−P precipitates and the added fluorine ions, but is not greatly influenced by the Ca/P ratio of the precipitates. These crystals with a Ca/P ratio between 1.67 and 1.5 show a poorly crystallized apatite structure at room temperature and a biphasic (HA+β−TCP) structure at 1100°C, corresponding to their Ca/P ratio. It is demonstrated that these nonstoichiometric apatite crystals contain lattice-bound water which could play an important role in the formation of bone apatite. The similarity in morphology and composition between these needle-like crystals and the apatite crystals in bone provides a possibility to make a bone-like implant consisting of these needle-like crystals and collagen, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. DE GROOT, “Bioceramics of calcium phosphate” (CRC Press, Bocca Raton, 1983).

    Google Scholar 

  2. A. HIRSCHMAN, A. E. SOBEL, B. KRAMER and I. FANKUCHEN, J. Biol. Chem. 171 (1947) 285.

    Google Scholar 

  3. R. M. BILTZ and E. D. PELLEGRINO, J. Dent. Res. 62 (1983) 1190.

    Google Scholar 

  4. P. FRAYSSINET, J. L. TROUILLET, N. ROUQUET, E. AZIMUS and A. AUTEFAGE, Biomaterials 14 (1993) 423.

    Google Scholar 

  5. G. DACULSI, N. PASSUTI, S. MARTIN, C. DEUDON, R. Z. LEGEROS, and S. RAHER, J. Biomed. Mater. Res. 24 (1990) 379.

    Google Scholar 

  6. LI YUBAO, ZHANG XINGDONG, CHEN WEIQUN, LIU YUHUA, C. P. A. T. KLEIN and K. DE GROOT, in Transactions of the 19th Annual Meeting of Society For Biomaterials, Birmingham, April, 1993 (Society For Biomaterials, Minneapolis, USA, 1993) p. 165.

    Google Scholar 

  7. C. P. A. KLEIN, K. DE GROOT, CHEN WEIQUN, LI YUBAO and ZHANG XINGDONG, Biomaterials 15 (1994) 31.

    Google Scholar 

  8. J. L. KATZ and R. A. HARPER, in “Encyclopedia of materials science and engineering” (Pergamon, Oxford, 1986) p. 475.

    Google Scholar 

  9. A. ENGSTROM, Exp. Cell Res. 43 (1966) 241.

    Google Scholar 

  10. J. D. TERMINE, E. D. EANES, D. J. GREENFIELD, M. U. NYLEN and R. A. HARPER, Calcif. Tissue Res. 12 (1974) 73.

    Google Scholar 

  11. W. J. LANDIS, M. C. PAINE and M. J. GLIMCHER, J. Ultrastruct. Res. 59 (1977) 1.

    Google Scholar 

  12. A. ASCENZI, A. BIGI, M. H. KOCK, A. RIPAMONTI and A. ROVERI, Calcif. Tissue Int. 37 (1985) 659.

    Google Scholar 

  13. A. S. POSNER, in “Bone and mineral research”, Vol. 5, edited by W. A. Peck (Elsevier, Amsterdam, 1987) p. 65.

    Google Scholar 

  14. E. D. EANES, in “Bone regulatory factors”, edited by A. Pecile and B. de Bernard, NATO ASI Series (Plenum Press, New York, 1990) p. 1.

    Google Scholar 

  15. G. MONTEL, G. BONEL, J. C. HEUGHEBAERT, J. C. TROMBE and C. REY, J. Cryst. Growth 53 (1981) 74.

    Google Scholar 

  16. P. DUCHEYNE, J. Biomed. Mater. Res. 21 (A2) (1987) 219.

    Google Scholar 

  17. A. MORTIER, J. LEMAITRE, L. RODRIQUE and P. G. ROUXHET, J. Solid State Chem. 78 (1989) 215.

    Google Scholar 

  18. J. L. LACOUT, in “Biomaterials-hard tissue repair and replacement”, edited by D. Muster (Elsevier Science Publishers, B. V., Amsterdam 1992) p. 81.

    Google Scholar 

  19. M. JARCHO, C. H. BOLEN, M. B. THOMAS, J. BOBICK, J. F. KAY and R. H. DOREMUS, J. Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  20. K. IOKU and M. YOSHIMURA, Phosphorus Res. Bull. 1 (1991) 15.

    Google Scholar 

  21. R. Z. LEGEROS and M. S. TUNG, Caries Res. 17 (1983) 419.

    Google Scholar 

  22. J. ARENDS, J. CHRISTOFFERSEN, M. R. CHRISTOFFERSEN, H. ECKERT, B. O. FOWLER, J. C. HEUGHERAERT, G. H. NANCOLLAS, J. P. VESINOWSKI and S. J. ZAWACKI, J. Cryst. Growth 84 (1987) 515.

    Google Scholar 

  23. E. E. BERRY, J. Inorg. Nucl. Chem. 39 (1967) 317.

    Google Scholar 

  24. JIMING ZHOU, XINGDONG ZHANG, JIYONG CHEN, SHAOXIAN ZENG and K. DE GROOT, J. Mater. Sci. Mater. Med. 4 (1993) 83.

    Google Scholar 

  25. J. B. PARK and R. S. LAKES, in “Biomaterials an introduction” (Plenum Press, New York and London, 1992) p. 192.

    Google Scholar 

  26. E. G. NORDSTROM and K. H. KARLSSON, J. Mater. Sci. Mater. Med. 1 (1990) 182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yubao, L., De Groot, K., De Wijn, J. et al. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci: Mater Med 5, 326–331 (1994). https://doi.org/10.1007/BF00058956

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058956

Keywords

Navigation