Skip to main content
Log in

Naturally and anthropogenically produced bromoform in the Kattegatt, a semi-enclosed oceanic basin

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The origin of bromoform in seawater and atmosphere, as well as possible sinks and breakdown mechanisms, is discussed. A bromoform budget is calculated for the Kattegatt area between Sweden and Denmark, where the input of bromoform from a power plant is significant. Both anthropogenically (250×106 g yr-1) and biogenically (350×106 g yr-1, 0.016 g m-2 yr-1) produced bromoform is likely to have a great impact locally on the inventory and the release to the atmosphere. Using measured surface concentrations of bromoform, the total annual release from the Kattegatt to the atmosphere is estimated to 550×106 g (0.025 g m-2 yr-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrie, L. A., Bottenheim, R. C., Crutzen, P. J., and Rasmussen, R. A., 1988. Ozone destruction and the chemical reactions at polar sunrise in the lower Arctic atmosphere, Nature 334, 138–141.

    Google Scholar 

  • Berg, W. W., Heidt, L. E., Pollock, W., Sperry, P. D., and Cicerone, R. J., 1984, Brominated organic species in the Arctic atmosphere, Geophys. Res. Lett. 11 (5), 429–432.

    Google Scholar 

  • Bouwer, E. W. and McCarthy, P. L., 1983, Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions, Appl. Environ. Microbiol. 45 (4), 1295–1299.

    Google Scholar 

  • Bouwer, E. W., Rittmann, B. E., and McCarthy, P. L., 1981, Anaerobic degradation of halogenated 1- and 2-carbon organic compounds, Environ. Sci. Technol. 15 (5), 596–599.

    Google Scholar 

  • Chiou, T., Freed, V. H., Schmedding, D. W., and Kohnert, R. L., 1977, Partition coefficient and bioaccumulation of selected organic chemicals, Environ. Sci. Technol. 11 (5), 475–478.

    Google Scholar 

  • Cicerone, R. J., Heidt, L. E., and Pollock, W. H. 1988, Measurements of atmospheric methyl bromide and bromoform, J. Geophys. Res. 93 (D4), 3745–3749.

    Google Scholar 

  • Class, Th. and Ballschmitter, K., 1988, Chemistry of organic traces in air VIII: Sources and distribution of bromo- and bromochloro-methanes in marine air and surface water of the Atlantic Ocean, J. Atmos. Chem. 6, 35–46.

    Google Scholar 

  • Dyrssen, D. and Fogelqvist, E., 1981, Bromoform concentrations of the Arctic Ocean in the Svalbard area, Oceanol. Acta 4, 313–317.

    Google Scholar 

  • Dyrssen, D., Fogelqvist, E., Krysell, M., and Sturm, R., 1990, Release of halocarbons from an industrial estuary, Tellus 42B, 162–169.

    Google Scholar 

  • Eklund, G., Fogelqvist, E., Josefsson, B., and Roos, C., 1979, Distribution of bromoform in seawater, Proceedings, First European Symposium on Micropollutants in Water, Berlin, E.R.G., pp. 286–293.

  • Eklund, G., Fogelqvist, E., and Roos, C., 1980, Determination of bromoform and some other volatile halocarbons in seawater. Results from expeditions in 1979 and 1980, Report on the chemistry of seawater XXV. Department of Analytical and Marine Chemistry, Chalmers University of Technology and University of Göteborg, S-412 96 Göteborg, Sweden.

    Google Scholar 

  • Fenical, W., 1982, Natural products chemistry in the marine environment, Science 215, 923–928.

    Google Scholar 

  • Fogelqvist, E., 1984, Low molecular weight chlorinated and brominated hydrocarbons in seawater. PhD thesis, Department of Analytical and Marine Chemistry, CTH/G S-412 96 Göteborg, Sweden.

  • Fogelqvist, E., 1985, Carbon tetrachloride, tetrachloroethylene, 1,1,1-trichloroethane and bromoform in Arctic seawater, J. Geophys. Res. 90 (C5), 9181–9193.

    Google Scholar 

  • Fogelqvist, E., Josefsson, B., and Roos, C., 1982, Halocarbons as tracer substances in studies of the distribution patterns of chlorinated waters in coastal areas, Environ. Sci. Technol. 16, 479–482.

    Google Scholar 

  • Fogelqvist, E., Krysell, M., and Danielsson, L.-G., 1986. On-line liquid-liquid extraction in a segmented flow directly coupled to on-column injection into a gas chromatograph, Anal. Chem. 58, 1516–1520.

    Google Scholar 

  • Fogelqvist, E. and Krysell, M., 1986, The anthropogenic and biogenic origin of low molecular weight halocarbons in a polluted fjord, the Idefjorden, Mar. Pollut. Bull. 17 (8), 378–382.

    Google Scholar 

  • Fonselius, S., 1987, Kattegatt — Havet i väster. SMHI Oceanografin. 18, SMHI Oceanographic Lab., Box 2212, S-403 14 Göteborg, Sweden (in Swedish).

    Google Scholar 

  • Gschwend, P. M., MacFarlane, J. K., and Newman, K. A., 1985, Volatile halogenated organic compounds released to seawater from temperate marine macroalgae, Science 227, 1033–1035.

    Google Scholar 

  • Helz, G. R. and Hsu, R. Y., 1978, Volatile chloro- and bromo-carbons in coastal waters, Limnol. Oceanogr. 23, 858–869.

    Google Scholar 

  • Hine, J. and Ehrenson, S. J., 1958, The effect of the structure on the relative stability of dihalomethylenes, J. Amer. Chem. Soc. 78, 824–830.

    Google Scholar 

  • Holmén, K. and Liss, P. S., 1984, Models for air-water gas transfer: an experimental investigation, Tellus 36B, 92–100.

    Google Scholar 

  • Krysell, M., 1989, Halocarbons as marine tracers. Determination and applications, PhD thesis, Department of Analytical and Marine Chemistry, CTH/GU, S-412 96 Göteborg, Sweden.

  • Krysell, M., 1991, Bromoform in the Nansen Basin in the Arctic Ocean, Marine Chem. 33, 187–197.

    Google Scholar 

  • Leo, A., Hansch, C., and Elkins, D., 1971, Partition coefficients and their uses, Chem. Rev. 71 (6), 525–531.

    Google Scholar 

  • Liss, P. S. and Merlivat, L., 1986, Air-sea gas exchange rates: Introduction and synthesis, in P. Buat-Ménard, The Role of Air-Sea Gas Exchange in Geochemical Cycling, D. Reidel, Dordrecht, pp. 113–127.

    Google Scholar 

  • Liss, P. S. and Slater, P. G., 1974, Flux of gases across the air-sea interface, Nature 247, 181–184.

    Google Scholar 

  • Mabey, W. and Mill, T., 1978, Critical review of hydrolysis of organic compounds in water, under environmental conditions, J. Phys. Chem. Ref. Data 7, 383–392.

    Google Scholar 

  • Mackay, D. and Shiu, W. Y., 1981, A critical review of Henry's law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data 10, 1175–1199.

    Google Scholar 

  • McElroy, M. B., Salawitch, R. J., Wofsy, S. C., and Logan, J. A., 1986, Reduction of Antarctic ozone due to synergistic interactions of chlorine and bromine, Nature 321, 759–762.

    Google Scholar 

  • Moore, R. E., 1977, Volatile compounds from marine algae, Acc. Chem. Res. 10, 40–47.

    Google Scholar 

  • Pedersén, M., 1976, A brominating and hydroxylating peroxidase from the red algae Cystoclonium Purpureum, Physiol. Plant. 37, 6–11.

    Google Scholar 

  • Penkett, S. A., Jones, B. M. R., Rycroft, M. J., and Simmons, D. A., 1985, An interhemispheric comparison of the concentrations of bromine compounds in the atmosphere, Nature 318, 550–553.

    Google Scholar 

  • Ramanathan, V., Cicerone, R. J., Singh, H. B., and Kiehl, J. T., 1985, Trace gas trends and their potential role in climate change, J. Geophys. Res. 90 (D3), 5547–5566.

    Google Scholar 

  • Rook, J. J., 1974, Formation of haloforms during chlorination of natural waters, J. Water Treatment and Examination 23 (2), 234–243.

    Google Scholar 

  • Sturges, W. T. and Harrison, R. M., 1986, Bromine in marine aerosols and the origin, nature and quantity of natural atmospheric bromine, Atmos. Environ. 20 (7), 1485–1496.

    Google Scholar 

  • Theiler, R., Cook, J. C., Hager, L. P., and Siuda, J. F., 1978, Halohydrocarbon synthesis by bromoperoxidase, Science 202, 1094–1096.

    Google Scholar 

  • Wakeham, S. G., Davis, A. C., and Karas, J. L., 1983, Mesocosm experiments to determine the fate and persistence of volatile organic compounds in coastal seawater, Environ. Sci. Technol. 17 (10), 611–617.

    Google Scholar 

  • Wever, R., Krenn, B. E., De, Boer, E., Offenberg, H., and Plat, H., 1988, Structure and function of vanadium-containing bromoperoxidases, in T. E., King, H. S., Mason, and M., Morrison (eds.), Oxidases and Related Redox Systems, Alan R. Liss, NY, pp. 477–493.

    Google Scholar 

  • Wofsy, S. C., McElroy, M. B., and Yung, Y. L., 1975, The chemistry of atmospheric bromine, Geophys. Res. Lett. 2 (6), 215–218.

    Google Scholar 

  • Xie, T.-M., Abrahamsson, K., Fogelqvist, E., and Josefsson, B., 1986, Distribution of chlorophenolics in a marine environment, Environ. Sci. Technol. 20, 457–463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fogelqvist, E., Krysell, M. Naturally and anthropogenically produced bromoform in the Kattegatt, a semi-enclosed oceanic basin. J Atmos Chem 13, 315–324 (1991). https://doi.org/10.1007/BF00057749

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00057749

Key words

Navigation