Skip to main content
Log in

Estimation of entropy and other functionals of a multivariate density

  • Estimation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

For a multivariate density f with respect to Lebesgue measure μ, the estimation of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qaaeaacaWGkbGaaiikaiaadAgacaGGPaGaamOzaiaadsgacqaH% 8oqBaSqabeqaniabgUIiYdaaaa!4404!\[\int {J(f)fd\mu } \], and in particular % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qaaeaacaWGMbWaaWbaaSqabeaacaaIYaaaaOGaamizaiabeY7a% TbWcbeqab0Gaey4kIipaaaa!41E4!\[\int {f^2 d\mu } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qaaeaacaWGMbGaciiBaiaac+gacaGGNbGaamOzaiaadsgacqaH% 8oqBaSqabeqaniabgUIiYdaaaa!44AC!\[\int {f\log fd\mu } \], is studied. These two particular functionals are important in a number of contexts. Asymptotic bias and variance terms are obtained for the estimators % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaybyaeqaleqabaGaey4jIKnaneaacaWGjbaaaOGaeyypa0Zaa8qa% aeaacaWGkbGaaiikamaawagabeWcbeqaaiabgEIizdqdbaGaamOzaa% aakiaacMcacaWGKbGaamOramaaBaaaleaacaWGobaabeaaaeqabeqd% cqGHRiI8aaaa!4994!\[\mathop I\limits^ \wedge = \int {J(\mathop f\limits^ \wedge )dF_N } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaybyaeqaleqabaGaeSipIOdaneaacaWGjbaaaOGaeyypa0Zaa8qa% aeaacaWGkbGaaiikamaawagabeWcbeqaaiabgEIizdqdbaGaamOzaa% aakiaacMcadaGfGbqabSqabeaacqGHNis2a0qaaiaadAgaaaGccaWG% KbGaeqiVd0galeqabeqdcqGHRiI8aaaa!4C40!\[\mathop I\limits^ \sim = \int {J(\mathop f\limits^ \wedge )\mathop f\limits^ \wedge d\mu } \], where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaybyaeqaleqabaGaey4jIKnaneaacaWGMbaaaaaa!3E9C!\[{\mathop f\limits^ \wedge }\] is a kernel density estimate of f and F n is the empirical distribution function based on the random sample X 1 ,..., X n from f. For the two functionalsmentioned above, a first order bias term for Î can be made zero by appropriate choices of non-unimodal kernels. Suggestions for the choice of bandwidth are given; for % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaybyaeqaleqabaGaey4jIKnaneaacaWGjbaaaOGaeyypa0Zaa8qa% aeaadaGfGbqabSqabeaacqGHNis2a0qaaiaadAgaaaGccaWGKbGaam% OramaaBaaaleaacaWGobaabeaaaeqabeqdcqGHRiI8aaaa!476C!\[\mathop I\limits^ \wedge = \int {\mathop f\limits^ \wedge dF_N } \], a study of optimal bandwidth is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I. A. (1976). On asymptotic properties of an estimate of a functional of a probability density, Scand. Actuar. J., 3, 176–181.

    Google Scholar 

  • Ahmad, I. A. and Lin, P.-E. (1976). A nonparametric estimation of the entropy for absolutely continuous distributions, IEEE Trans. Inform. Theory, 22, 372–350.

    Google Scholar 

  • Bhattacharya, G. K. and Roussas, G. G. (1969). Estimation of a certain functional of a probability density function, Scand. Actuar. J., 201–206.

  • Dmitriev, Yu. G. and Tarasenko, F. P. (1973). On the estimation of functionals of the probability density and its derivatives. Theory Probab. Appl., 18, 628–633.

    Google Scholar 

  • Dmitriev, Yu. G. and Tarasenko, F. P. (1974). On a class of nonparametric estimates of nonlinear functionals of density, Theory Probab. Appl., 19, 390–393.

    Google Scholar 

  • Huber, P. J. (1985). Projection pursuit, Ann. Statist., 13, 435–474.

    Google Scholar 

  • Joe, H. (1987). Majorization, randomness and dependence for multivariate distributions, Ann. Probab., 15, 1217–1225.

    Google Scholar 

  • Joe, H. (1989). Relative entropy measures of multivariate dependence, J. Amer. Statist. Assoc., 84, 157–164.

    Google Scholar 

  • Jones, M. C. and Sibson, R. (1987). What is projection pursuit?, J. Roy. Statist. Soc. Ser. A, 150, 1–18.

    Google Scholar 

  • Pawlak, M. (1986). On nonparametric estimation of a functional of a probability density, IEEE Trans. Inform. Theory, 32, 79–84.

    Google Scholar 

  • Prakasa Rao, B. L. S. (1983). Nonparametric Functional Estimation, Academic Press, Orlando, Florida.

    Google Scholar 

  • Schuster, E. F. (1969). Estimation of a probability density function and its derivatives, Ann. Math. Statist., 40, 1187–1195.

    Google Scholar 

  • Schuster, E. F. (1974). On the rate of convergence of an estimate of a functional of a probability density, Scand. Actuar. J., 1, 101–107.

    Google Scholar 

  • Schweder, T. (1975). Window estimation of the asymptotic variance of rank estimators of location, Scand. J. Statist., 2, 113–126.

    Google Scholar 

  • Serfling, R. J. (1980). Approximation Theorems in Mathematical Statistics, Wiley, New York.

    Google Scholar 

  • Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman & Hall, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by an NSERC Grant and a UBC Killam Research Fellowship.

About this article

Cite this article

Joe, H. Estimation of entropy and other functionals of a multivariate density. Ann Inst Stat Math 41, 683–697 (1989). https://doi.org/10.1007/BF00057735

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00057735

Key words and phrases

Navigation