Skip to main content
Log in

Chromosomal and molecular divergence in the Indian pygmy field mice Mus booduga-terricolor lineage of the subgenus Mus

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Mus booduga and Mus terricolor both have 2n=40. Unlike M. booduga, with all acrocentric chromosomes, M. terricolor invariably has large submetacentric X and acrocentric Y due to an increase of heterochromatin. In contrast to the conservative karyotype of the co-existing sibling species booduga, three chromosome types of terricolor are found in different populations and their divergent karyotypes have autosomal heterochromatin variations established in the homozygous condition. The average genetic distance determined from electrophoretic study of 20 protein loci ranges from lowest (D=0.106) between chromosome types I & II to highest (D=0.185) between types II & III. In terricolor, booduga and M. m. tytleri high mean values of variations per locus (range A=1.604 to 1.928) and heterozygosity per individual per locus (range H=0.180 to 0.336) have been observed. Sequence divergence of 0.39 to 1.2%, calculated from restriction profiles of mtDNA, shows that the terricolor chromosome types have diverged recently. Hybridizations between type I females and type III males gave a preponderance of males in the F1 with varying degrees of sterility. The ‘terricolor complex’ is an interesting system for critical probing for the role of heterochromatin in the process of speciation. MtDNA, protein loci and AT-rich musculus-related major and minor satellite DNA data indicate that progenitors of the booduga-terricolor lineage might have evolved simultaneously with the caroli-cookii-cervicolor lineage in the evolution of the subgenus Mus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahadur, M. & T. Sharma, 1993. Results of hybridization between two chromosome types of Mus dunni, and occurrence of a unique feature of increase in size of autosomal heterochromatic short arms. XVI All India Cell Biology Conference, Abstract No. 82.

  • Balajee, A.S. & T., Sharma, 1994. The chromosomal distribution of Mus musculus-like AT-rich heterochromatin in the M. dunni complex as revealed by Alu I digestion of metaphase chromosomes. Cytogenet. Cell Genet. 66: 89–92.

    Google Scholar 

  • Bonhomme, F., J., Catalan, J., Britton-Davidian, V.M., Chapman, K., Moriwaki, E., Nevo & L., Thaler, 1984. Biochemical diversity and evolution in genus Mus. Biochem. Genet. 22: 275–303.

    Google Scholar 

  • Britton-Davidian, J., 1990. Genic differentiation in M. m. domesticus populations from Europe, the Middle East and North Africa: geographic patterns and colonization events. Biol. J. Linn. Soc. 41: 27–45.

    Google Scholar 

  • Brown, W.M., M., George & A.C., Wilson, 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76: 1967–1971.

    Google Scholar 

  • Capanna, E., 1985. Karyotype variability and chromosome transilience in rodents: the case of the genus Mus. pp. 643–669 in Evolutionary Relationships Among Rodents edited by W.P. Luckett and J.H. Hartenberger. Plenum Pub. Corp.

  • Chatterjee, B., M., Bahadur & T., Sharma, 1994. Mitochondrial DNA restriction maps of Mus booduga, Mus terricolor and Mus musculus tytleri. J. Genet. 73: 57–64.

    Google Scholar 

  • Cheong, N., 1986. Evolutionary divergence in Indian pygmy field mice: cytogenetics, habitat and behaviour studies. Ph.D. thesis. Banaras Hindu University.

  • Dod, B., E., Mottez, E., Desmarais, F., Bonhomme & G., Roizes, 1989. Concerted evolution of light satellite DNA in genus Mus implies amplification and homogenization of large blocks of repeats. Mol. Biol. Evol. 6(5): 478–491.

    Google Scholar 

  • Ferris, S.D., R.D., Sage, C.M., Huang, J.T., Nielsen, U., Ritte & A.C., Wilson, 1983. Flow of mitochondrial DNA across a species boundary. Proc. Natl. Acad. Sci. USA 80: 229--2294.

    Google Scholar 

  • Garagna, S., C.A., Redi, E., Capanna, N., Andayani, R.M., Alfano, P., doi & G., Viale, 1993. Genome distribution, chromosomal allocation and organization of major and minor satellite DNAs in 11 species and subspecies of genus Mus. Cytogenet. Cell Genet. 64: 247–255.

    Google Scholar 

  • Gropp, A., H., Winking, L., Zech & H.J., Mueller, 1972. Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma 39: 265–288.

    Google Scholar 

  • Jacobs, L.L., 1978. Fossil rodents (Rhizomyidae and Muridae) from Neogene Siwalik deposits, Pakistan. Museum of Northern Arizona Press Bull series 52: 1–103.

    Google Scholar 

  • John, B. & G.L.G., Miklos, 1979. Functional aspects of satellite DNA and heterchromatin. pp. 1–114 in Int. Rev. Cytol. Vol. 58 edited by G.H., Bourne and J.F., Danielli. Academic Press, New York.

    Google Scholar 

  • Manjunatha, K.R. & N.V., Aswathanarayana, 1979. Studies on the chromosomes of the genus Mus: autosomal polymorphism in the Indian pygmy mouse Mus dunni (Wroughton). curr. Sci. 48: 657–659.

    Google Scholar 

  • Markvong, A., J.T., Marshall, S., Pathak & T.C., Hsu, 1975. Chromosomes and DNA of Mus: The karyotypes of Mus fulvidiventris and M. dunni. Cytogenet. Cell Genet. 14: 116–125.

    Google Scholar 

  • Marshall, J.T. 1977. A synopsis of Asian species of Mus (Rodentia, Muridae) Bull. Am. Museum Nat. Hist. 158: 175–220.

    Google Scholar 

  • Matthey, R. & F., Petter, 1968. Existence de deux especes distinctes, l'une chromosomiquement polymorphe, chez des Mus Indiens du groupe booduga. Etude cytogenetique et taxonomique. Rev. Suisse de Zool. 75: 461–498.

    Google Scholar 

  • Miklos, G.L.G., 1985. Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes, pp. 241–321 in Molecular Evolutionary Genetics edited by R.J., MacIntyre. Plenum Press, New York.

    Google Scholar 

  • Musser, G.G. & M.D., Carleton, 1993. Family Muridae. pp. 501–756 in Mammal Species of the World: A Taxonomic and Geographic reference (2nd edn.) edited by D.N., Wilson and D.M., Reeder. Smithsonian Institution, Washington.

    Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Nei, M. & F., Tajima, 1983. Maximum likelihood estimation of the number of nucleotide substitutions from restriction site data. Genetics 105: 207–217.

    Google Scholar 

  • Nevo, E., M.G., Filippucci & A., Beiles, 1990. Genetic diversity and its ecological correlates in nature: comparisons between subterranean, fossorial, and aboveground small mammals. pp. 347–366 in Evolution of Subterranean Mammals at the Organismal and Molecular Levels, edited by E., Nevo and O.A., Reig, Wiley-Liss, New York.

    Google Scholar 

  • Patnaik, R., M., Bahadur, T., Sharma & A., Sahni, 1993. A comparative analysis of molars of Mus booduga, Mus dunni and fossil Mus of the Indian subcontinent: Phylogenetic and Palaeobiogeographic implications. Curr. Sci. 65: 782–786.

    Google Scholar 

  • Searle, J.B., R., Huebner, B.M.N., Wallace & S., Garagna, 1990. Robertsonian variations in wild mice and shrews. pp. 253–263 in Chromosomes Today Vol. 10 edited by K., Fredga, B.A., Kihlman and M.D., Bennett. Unwin Hyman, London.

    Google Scholar 

  • Sen, S. & T., Sharma, 1980. Quantitative variation of ‘Mus musculus-like’ constitutive heterochromatin and satellite DNA-sequences in the genus Mus. Chromosoma 81: 393–402.

    Google Scholar 

  • Sen, S. & T., Sharma, 1983. Role of constitutive heterochromatin in evolutionary divergence: Results of chromosome banding and condensation inhibition studies in Mus musculus, Mus booduga and Mus dunni. Evolution 37: 628–636.

    Google Scholar 

  • Sharma, T. & G.S., Garg, 1975. Constitutive heterochromatin and karyotype variation in Indian pygmy mouse, Mus dunni. Genet. Res. (Camb.) 25: 189–191.

    Google Scholar 

  • Sharma, T., A.S., Balajee & N., Cheong, 1990. Chromosomal speciation: Constitutive heterochromatin and evolutionary differentiation of the Indian pygmy field mice. pp. 265–283 in Trends in Chromosome Research edited by T., Sharma. Springer-Verlag and Narosa Publishing House, New Delhi.

    Google Scholar 

  • Sharma, T., N., Cheong, P., Sen & S., Sen, 1986. Constitutive heterochromatin and evolutionary divergence of Mus dunni, M. booduga and M. musculus. pp. 35–44 in Current topics in Microbiology and Immunology: The wild mice in Immunology edited by M., Potter, J.H., Nadeau and M.P., Cancro. Springer-Verlag. Berlin, Heidelberg.

    Google Scholar 

  • She, J.X., F., Bonhomme, P., Boursot, L., Thaler & F., Catzfelis, 1990. Molecular phylogenies in the genus Mus: Comparative analysis of electrophoretic, scn DNA hybridization, and mtDNA RFLP data. Biol. J. Linn. Soc. 41: 83–103.

    Google Scholar 

  • Singh, S. & T. Sharma, 1995. Genic variation and phylogenetic relationships in the Indian pygmy field mice Mus booduga-terricolor complex. Symposium on Chromosomal and Molecular Basis of Genetic Analysis, Varanasi. Abstract No. 52.

  • White, M.J.D., 1973. Animal Cytology and Evolution (3rd edn.) Cambridge Univ. Press.

  • Yonekawa, H., K., Moriwaki, O., Gotoh, J., Hayashi, J., Watanabe, N., Miyashita, M.L., Petras & Y., Tagashira, 1981. Evolutionary relationships among five subspecies of Mus. musculus based on restriction enzyme cleavage patterns of mitochondrial DNA. Genetics 98: 801–816.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, T. Chromosomal and molecular divergence in the Indian pygmy field mice Mus booduga-terricolor lineage of the subgenus Mus . Genetica 97, 331–338 (1996). https://doi.org/10.1007/BF00055319

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00055319

Key words

Navigation