Skip to main content
Log in

Canonical correlation analysis as an ordination technique

  • Published:
Vegetatio Aims and scope Submit manuscript

Summary

Canonical correlation analysis seeks linear axes that reveal the joint structure of two matrices. Potentially, CCA could be a valuable technique for ordination and analysis of dual matrices of community and environmental measurements. Performance of CCA was tested with simulated and real vegetational data. CCA was found to have stringent requirements for linearity, and consequently to have little value for ordination. Indirect ordination of community data by reciprocal averaging, followed by interpretation of environmental relationships of the axes, should generally be more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aart, P.J.M.van der & N., Smeenk-Enserink. 1975. Correlations between distributions of hunting spiders (Lycosidae, Ctenidae) and environmental characteristics in a dune area. Neth. J. Zool. 25: 1–45.

    Google Scholar 

  • Austin, M.P. 1968. An ordination study of a chalk grassland community. J. Ecol. 56: 739–757.

    Google Scholar 

  • Austin, M.P., P.S., Ashton & P., Greig-Smith. 1972. The application of quantitative methods to vegetation survey. III. A re-examination of rain forest data from Brunei. J. Ecol. 60: 305–324.

    Google Scholar 

  • Barkham, J.P. & J.M., Norris. 1970. Multivariate procedures in an investigation of vegetation and soil relations of two beech woodlands, Cotswold Hills, England. Ecology 51: 630–639.

    Google Scholar 

  • Beals, E.W. 1973. Ordination: mathematical elegance and ecological naïveté. J. Ecol. 61: 23–25.

    Google Scholar 

  • Cassie, R.M. 1969. Multivariate analysis in ecology. Proc. N.Z. Ecol. Soc. 16: 53–57.

    Google Scholar 

  • Cassie, R.M. & A.D., Michael. 1968. Fauna and sediments of an intertidal mud flat: a multivariate analysis. J. Exp. Mar. Biol. Ecol. 2. 1–23.

    Google Scholar 

  • Dagnelie, P. 1960. Contribution à l'étude des communautés végétales par l'analyse factorielle. (Engl. Summ.) Bull. Serv. Carte phytogéo gr., Paris, Sér. B 5: 7–71, 93–195.

    Google Scholar 

  • Eberhardt, E., D., Kopp & H., Passarge. 1967. Standorte und Vegetation des Kirchleerauer Waldes im Schweizerischen Mittelland. (Engl. and French summs.) In ‘Vegetations-und bodenkundliche Methoden der forstlichen Standortskartierung’, ed. H., Ellenberg. Veröff. Geobot. Inst. Rübel, Zürich 39: 13–134, 280–281, 290–291.

    Google Scholar 

  • Frehner, H.-K. 1967. Kartierung der Waldgesellschaften des V. aargauischen Forstkreises Zofingen nach der Methode von Braun-Blanquet. (Engl. and French summs.) In ‘Vegetations- und bodenkundliche Methoden der forstlichen Satndortskarierung’, ed. H., Ellenberg. Veroff. Geobot. Inst. Rübel, Zürich 39: 135–147, 281–282, 291–292.

    Google Scholar 

  • Gauch, H.G. 1973. The relationship between sample, similarity and ecological distance. Ecology 54: 618–622.

    Google Scholar 

  • Gauch, H.G. & R.H., Whittaker. 1972. Comparison of ordination techniques. Ecology 53: 868–875.

    Google Scholar 

  • Gauch, H.G. & R.H., Whittaker. 1976. Simulation of community patterns. Vegetatio 33: 13–16.

    Google Scholar 

  • Gauch, H.G., R.H. Whittaker & T.R. Wentworth. 1976. A comparative study of reciprocal averaging and other ordination techniques. J. Ecol. (in press).

  • Goff, F.G. & G., Cottam. 1967. Gradient analysis: the use of species and synthetic indices. Ecology 48: 793–806.

    Google Scholar 

  • Goldstein, R.A. & D.F., Grigal. 1972a. Computer programs for the ordination and classification of ecosystems. Ecological Sciences Division Publication No. 417, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Goldstein, R.A. & D.F., Grigal. 1972b. Definition of vegetation structure by canonical analysis. J. Ecol. 60: 277–284.

    Google Scholar 

  • Goodall, D.W. 1954. Objective methods for the classification of vegetation. III. An eassay in the use of factor analysis. Austral. J. Bot. 2: 304–324.

    Google Scholar 

  • Goodall, D.W. 1973. Sample similarity and species correlation. (Germ. summ.) In ‘Ordination and Classification of Communities’ ed. R.H., Whittaker. Handb. Veget. Sci. 5: 105–156. Junk, The Hague.

    Google Scholar 

  • Hill, M.O. 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237–249.

    Google Scholar 

  • Hughes, R.E. & D.V., Lindley. 1955. Application of biometric methods to problems of classification in ecology. Nature, Lond. 175: 806–807.

    Google Scholar 

  • Jeglum, J.K., C.F., Wehrhahn & J.M.A., Swan. 1971. Comparisons of environmental ordinations with principal component vegetational ordinations for sets of data having different degrees of complexity. (French summ.) Can. J. For. Res. 1: 99–112.

    Google Scholar 

  • Kercher, J.R. & R.A. Goldstein. 1976. Vegetation analysis by canonical correlation of species and environmental parameters. (Manuscript).

  • Loucks, O.L. 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecol. Monogr. 32: 137–166.

    Google Scholar 

  • Morrison, D.F. 1967. Multivariate statisical methods. McGraw-Hill, New York.

    Google Scholar 

  • Orlóci, L. 1975. Multivariate analysis in vegetation research. Junk, The Hague.

    Google Scholar 

  • Pielou, E.C. 1969. An introduction to mathematical ecology. Wiley-Interscience, New York.

    Google Scholar 

  • Rogers, D.J. 1970. A preliminary ordination study of forest vegetation in the Kirchleerau area of the Swiss Midland. (Germ. summ.) Ber. Geobot. Inst. Rübel, Zürich, 1969, 40: 28–78.

    Google Scholar 

  • Service, J. 1972. A user's guide to the statistical analysis systems. Student Supply Stores, North Carolina State University, Raleigh, North Carolina.

    Google Scholar 

  • Webb, L.J., J.G., Tracey, W.T., Williams & G.N., Lance. 1971. Prediction of agricultural potential from intact forest vegetation. J. Appl. Ecol. 8: 99–121.

    Google Scholar 

  • Wentworth, T.R. 1976. The vegetation of limestone and granite soils in the mountains of Southeastern Arizona. Ph.D. thesis, Cornell University.

  • Westman, W.E. 1971. Production, nutrient circulation, and vegetation-soil relations of the pygmy forest region of northern California. Ph.D. thesis, Cornell University.

  • Westman, W.E. 1975. Edaphic climax pattern of the pygmy forest region of California. Ecol. Monogr. 45: 109–135.

    Google Scholar 

  • Whittaker, R.H. 1954. Plant populations and the basis of plant indication (Germ. summ.) Angew. Pflsoziol. (Wien), Festschr. Aichinger 1: 183–206.

    Google Scholar 

  • Whittaker, R.H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.

    Google Scholar 

  • Whittaker, R.H. 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Google Scholar 

  • Whittaker, R.H. 1972. Convergences of ordination and classification. (Germ. summ.) In ‘Grundfragen und Methoden in der Pflanzensoziologie’ eds. E. van der Maarel & R. Tüxen. Ber. Symp. int. Ver. Vegetationskunde, Rinteln, 1970: 39–57.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a grant from the National Science Foundation. We appreciate preparation of the manuscript and aid with computations from S.B. Conley, C.E. French, Jr. and B.D. Lanyon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauch, H.G., Wentworth, T.R. Canonical correlation analysis as an ordination technique. Vegetatio 33, 17–22 (1976). https://doi.org/10.1007/BF00055295

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00055295

Keywords

Navigation