Skip to main content
Log in

On plant sectoriality, or how to combine the benefits of autonomy and integration

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Plant sectoriality implies physiological subdivision of physically coherent plant structures. It is largely determined by vascular structure. Sectorial transport of carbon assimilates, mineral nutrients, water or hormones may be an essential component of plant phenotype in ecological interactions. Most studies of sectoriality have focussed on its effects on plant growth, resource allocation and herbivory. Since sectoriality allows semiautonomous reactions to environmental stimuli to be displayed by different plant parts, it also needs to be considered in discussions of selfishness vs. altruism of plant parts. Future lines of research should include analysis of the genetic basis of sectoriality, investigations into root sectoriality and its effects, studies of the impacts of sectoriality on plant life histories, and analyses of intra- and interpopulation variation in traits related to sectoriality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antolin M. F. & Strobeck C. 1985. The population genetics of somatic mutation in plants. Amer. Nat. 126: 52–62.

    Google Scholar 

  • Beck C. B., Schmid R. & Rothwell G. W. 1982. Stelar morphology and the primary vascular system of seed plants. Bot. Rev. 48: 691–815.

    Google Scholar 

  • Berntson G. M. 1994. Modelling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? New Phytol. 127: 483–493.

    Google Scholar 

  • Buss L. W. 1983. Evolution, development, and the units of selection. Proc. Nat. Acad. Sci. USA 80: 1387–1391.

    Google Scholar 

  • Dawkins R. 1982. Replicators and vehicles. Pp. 45–64. In: King's College Sociobiology Group (ed.), Current problems in sociobiology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Feldman L. J. 1988. The habits of roots. BioScience 38: 612–618.

    Google Scholar 

  • Gottlieb L. D. 1984. Genetics and morphological evolution in plants. Amer. Nat. 123: 681–709.

    Google Scholar 

  • Gottlieb L. D. 1986. The genetic basis of plant form. Phil. Trans. Roy. Soc. Lond. B 313: 197–208.

    Google Scholar 

  • Groff P. A. & Kaplan D. R. 1988. The relation of root systems to shoot systems in vascular plants. Bot. Rev. 54: 387–422.

    Google Scholar 

  • Hallé F., Oldeman R. A. A. & Tomlinson P. B. 1978. Tropical trees and forests: an architectural analysis. Springer-Verlag, Berlin.

    Google Scholar 

  • Hamilton W. D. 1964. The genetical evolution of social behaviour. I–II. J. Theor. Biol. 7: 1–52.

    Google Scholar 

  • Hardwick R. C. 1986. Physiological consequences of modular growth in plants. Phil. Trans. Roy. Soc. Lond. B 313: 161–173.

    Google Scholar 

  • Haukioja E. 1990. Induction of defenses in trees. Ann. Rev. Entomol. 36: 25–42.

    Google Scholar 

  • Haukioja E. 1991. The influence of grazing on the evolution morphology and physiology of plants as modular organisms. Phil. Trans. Roy. Soc. Lond. B 333: 241–247.

    Google Scholar 

  • Haukioja E., Ruohomäki K., Senn J., Suomela J. & Walls M. 1990. Consequences of herbivory in the mountain birch (Betula pubescens ssp. tortuosa): importance of the functional organization of the tree. Oecologia 82: 238–247.

    Google Scholar 

  • Jones C. G., Hopper R. F., Coleman J. S. & Krischik V. A. 1993. Control of systemically induced herbivore resistance by plant vascular architecture. Oecologia 93: 452–456.

    Google Scholar 

  • Kelly C. K. 1995. Thoughts on clonal integration: facing the evolutionary context. Evol. Ecol. 9: 575–585.

    Google Scholar 

  • Klekowski E. J. & Kazarinova-Fukshansky N. 1984. Shoot apical meristems and mutation: selective loss of disadvantageous cell genotypes. Amer. J. Bot. 71: 28–34.

    Google Scholar 

  • Küppers M. 1989. Ecological significance of above-ground architectural patterns in woody plants: a question of cost-benefit relationships. Tr. Ecol. Evol. 4: 375–379.

    Google Scholar 

  • Landa K., Benner B., Watson M. A. & Gartner J. 1992. Physiological integration for carbon in mayapple (Podophyllum peltatum), a clonal perennial herb. Oikos 63: 348–356.

    Google Scholar 

  • Lawton J. H. 1983. Plant architecture and the diversity of phytophagous insects. Ann. Rev. Entomol. 28: 23–39.

    Google Scholar 

  • Outridge P. M. & Hutchinson T. C. 1990. Effects of cadmium on integration and resource allocation in the clonal fern Salvinia molesta. Oecologia 84: 215–223.

    Google Scholar 

  • Pitelka L. F. & Ashmun J. W. 1985. Physiology and integration of ramets in clonal plants. Pp. 399–435. In: Jackson J. B. C., Buss L. W. & Cook R. E. (eds), Population biology and evolution of clonal organisms. Yale University Press, New Haven.

    Google Scholar 

  • Pyke G. H. 1984. Optimal foraging theory: a critical review. Ann. Rev. Ecol. Syst. 15: 523–575.

    Google Scholar 

  • Room P. M., Maillette L. & Hanan J. S. 1994. Module and metamer dynamics and virtual plants. Adv. Ecol. Res. 25: 105–157.

    Google Scholar 

  • Sachs T., Novoplansky A. & Cohen D. 1993. Plants as competing populations of redundant organs. Plant, Cell and Env. 16: 765–770.

    Google Scholar 

  • Shea M. S. & Watson M. A. 1989. Patterns of leaf and flower removal: their effect on fruit growth in Chamaenerion angustifolium (fireweed). Amer. J. Bot. 76: 884–890.

    Google Scholar 

  • Silander J. A. 1985. Microevolution in clonal plants. Pp. 107–152. In: Jackson J. B. C., Buss L. W. & Cook R. E. (eds), Population biology and evolution of clonal organisms. Yale University Press, New Haven.

    Google Scholar 

  • Slade A. J. & Hutchings M. J. 1987a. The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea. J. Ecol. 75: 95–112.

    Google Scholar 

  • Slade A. J. & Hutchings M. J. 1987b. The effects of light intensity on foraging in the clonal herb Glechoma hederacea. J. Ecol. 75: 639–650.

    Google Scholar 

  • Slatkin M. 1985. Somatic mutations as an evolutionary force. Pp. 19–30. In: Greenwood P. J., Harvey P. H. & Slatkin M. (eds), Evolution. Essays in honour of John Maynard Smith. Cambridge University Press, Cambridge.

    Google Scholar 

  • Sprugel D. G., Hinckley T. M. & Schaap W. 1991. The theory and practice of branch autonomy. Ann. Rev. Ecol. Syst. 22: 309–334.

    Google Scholar 

  • Sutherland W. J. & Watkinson A. R. 1986. Do plants evolve differently? Nature 320: 305.

    Google Scholar 

  • Thomas L. P. & Watson M. A. 1988. Leaf removal and the apparent effects of architectural constraints on development in Capsicum annuum. Amer. J. Bot. 75: 840–843.

    Google Scholar 

  • Watson M. A. 1986. Integrated physiological units in plants. Tr. Ecol. Evol. 1: 119–123.

    Google Scholar 

  • Watson M. A. & Casper B. B. 1984. Morphogenetic constraints on patterns of carbon distribution in plants. Ann. Rev. Ecol. Syst. 15: 233–258.

    Google Scholar 

  • White J. 1984. Plant metamerism. Pp. 15–47. In: Dirzo R. & Sarukhán J. (eds), Perspectives on plant population ecology. Sinauer, Sunderland (MA).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuorisalo, T., Hutchings, M.J. On plant sectoriality, or how to combine the benefits of autonomy and integration. Vegetatio 127, 3–8 (1996). https://doi.org/10.1007/BF00054841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054841

Keywords

Navigation