Skip to main content
Log in

Simulation of moss and tree dynamics in the boreal forests of interior Alaska

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

We used a simulation model of forest dynamics to examine the ecological significance of the complex interactions among site conditions, tree growth, and the development of a thick forest floor moss layer found in many boreal forests. To examine the effect of site conditions on moss growth and forest dynamics, we simulated the dynamics of several different forest sites in the uplands of interior Alaska. Then we used a cold, wet permafrost site to examine the ecological consequences of direct moss and tree interactions. Our analyses revealed a tightly coupled system in which forest succession was highly sensitive to the interactions among site conditions, mosses, and trees. The effect of mosses on the soil thermal regime was a particularly important feedback. Direct interactions between mosses and trees that affected the development of a thick forest floor layer were also important. In particular, shading of moss by trees, reduced tree regeneration on moss-covered soils, and reduced moss growth with open forest canopies were also important determinants of forest succession. These complex feedbacks ensure that an ecosystem approach is needed to understand the ecology of boreal forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abolin' A. A. 1974. Change of the structure of the moss cover in relation to the distribution of precipitation under the forest canopy. Soviet J. Ecol. 5: 243–247.

    Google Scholar 

  • Alexander V. & Billington M. M. 1986. Nitrogen fixation in the Alaskan taiga. In: Van Cleve K., Chapin F. S., Flanagan P. W., Viereck L. A., & Dyrness C. T. (eds), Forest ecosystems in the Alaskan taiga, pp. 112–120. Springer-Verlag, New York.

    Google Scholar 

  • Barney R. J. & Van Cleve K. 1973. Black spruce fuel weights and biomass in two interior Alaska stands. Can. J. For. Res. 3: 304–311.

    Google Scholar 

  • Benninghoff W. S. 1952. Interaction of vegetation and soil frost phenomena. Arctic 5: 34–44.

    Google Scholar 

  • Billington M. M. & Alexander V. 1983. Site-to-site variations in nitrogenase activity in a subarctic black spruce forest. Can. J. For. Res. 13: 782–788.

    Google Scholar 

  • Black R. A. & Bliss L. C. 1980. Reproductive ecology ofPicea mariana (Mill) B. S. P., at tree line near Inuvik, Northwest Territories, Canada. Ecol. Monogr. 50: 331–354.

    Google Scholar 

  • Bonan G. B. 1988. A simulation model of environmental processes and vegetation patterns in boreal forests: test case Fairbanks, Alaska. Working Paper WP-88–63. Inter. Inst. Appl. Syst. Anal., Laxenburg, Austria.

    Google Scholar 

  • Bonan G. B. 1989. A computer model of the solar radiation, soil moisture, and soil thermal regimes in boreal forests. Ecol. Modelling 45: 275–306.

    Google Scholar 

  • Bonan G. B. & Shugart H. H. 1989. Environmental factors and ecological processes in boreal forests. Ann. Rev. Ecol. Syst. 20: 1–28.

    Google Scholar 

  • Botkin D. B., Janak J. F. & Wallis J. R. 1972. Some ecological consequences of a computer model of forest growth. J. Ecol. 60: 849–873.

    Google Scholar 

  • Busby J. R., Bliss L. C. & Hamilton C. D. 1978. Microclimate control of growth rates and habitats of the boreal mosses,Tomenthypnum nitens andHylocomium splendens. Ecol. Monogr. 48: 95–110.

    Google Scholar 

  • Busby J. R. & Whitfield D. W. A. 1978. Water potential, water content, and net assimilation in some boreal forest mosses. Can. J. Bot. 56: 1551–1558.

    Google Scholar 

  • Drury, W. H. 1956. Bog flats and physiographic processes in the upper Kuskokwim Region, Alaska. Gray Herbarium Harvard Univ. Pub. No. 178, Cambridge, MA.

  • Dyrness C. T. 1982. Control of depth to permafrost and soil temperature by the forest floor in black spruce/feathermoss communities. USDA For. Serv. Res. Note PNW-396. Pacific Northwest For. and Range Exp. Stn., Portland, OR.

    Google Scholar 

  • Dyrness C. T. & Grigal D.F. 1979. Vegetation-soils relationships along a spruce forest transect in interior Alaska. Can. J. Bot. 57: 2644–2656.

    Google Scholar 

  • Dyrness C. T., Viereck L. A. & Van Cleve K. 1986. Fire in taiga communities of interior Alaska. In: Van Cleve K., Chapin F. S., Flanagan P. W., Viereck L. A. & Dyrness C. T. (eds)., Forest ecosystems in the Alaskan taiga, pp. 74–86. Springer-Verlag, New York.

    Google Scholar 

  • Goldstein G. H., Brubaker L. B., & Hinckley T. M. 1985. Water relations of white spruce (Picea glauca (Moench) Voss) at tree line in north central Alaska. Can. J. For. Res. 15: 1080–1087.

    Google Scholar 

  • Harmon M. E. & Franklin J. F. 1989. Tree seedlings on logs inPicea-Tsuga forests of Oregon and Washington. Ecology 70: 48–59.

    Google Scholar 

  • Heinselman M. L. 1963. Forest sites, bog processes, and peatland types in the glacial Lake Agassiz region, Minnesota. Ecol. Monogr. 33: 327–374.

    Google Scholar 

  • Hustich I. 1954. On forests and tree growth in the Knob Lake area, Quebec-Labrador peninsula. Acta Geogr. 13: 1–60.

    Google Scholar 

  • Hytteborn H., Packham S. R. & Verwijst T. 1987. Tree population dynamics, stand structure and species composition in the montane virgin forest of Vallibäcken, northern Sweden. Vegetatio 72: 3–19.

    Google Scholar 

  • Ipatov V. S. & Tarkhova T. N. 1980. Microclimate of habitats of moss and lichen synusiae in green moss-lichen pine forests. Soviet J. Ecol. 11: 262–268.

    Google Scholar 

  • Ipatov V. S. & Tarkhova T. N. 1983. Mutual influence of moss and lichen synusiae in green moss-lichen pine forests. Soviet J. Ecol. 14: 16–21.

    Google Scholar 

  • Karpov V. G. 1983. Regulation factors of spruce forest ecosystems. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Kataeva K. V. & Korzuhin M. D. 1987. Dynamics of dark coniferous-cedar forests. Natural Env. Climate Mon. Lab., USSR State Hydromet. Comm., Acad. Sci., Moscow (in Russian).

    Google Scholar 

  • Klinger, L. F. 1988. Successional changes in vegetation and soils of southeast Alaska. Ph.D. diss. Univ. of Colorado, Boulder, CO.

  • La Roi G. H. & Stringer M. H. L. 1976. Ecological studies in the boreal spruce-fir forests of the North American taiga. II. Analysis of the bryophyte flora. Can. J. Bot. 54: 619–643.

    Google Scholar 

  • Larcher W. 1980. Physiological plant ecology. Springer-Verlag, Berlin.

    Google Scholar 

  • Larsen J. A. 1980. The boreal ecosystem. Academic Press, New York.

    Google Scholar 

  • Lawrence W. T. & Oechel W. C. 1983a. Effects of soil temperature on the carbon exchange of taiga seedlings. I. Root respiration. Can. J. For. Res. 13: 840–849.

    Google Scholar 

  • Lawrence W. T. & Oechel W. C. 1983b. Effects of soil temperature on the carbon exchange of taiga seedlings. II. Photosynthesis, respiration, and conductance. Can. J. For. Res. 13: 850–859.

    Google Scholar 

  • Longton R. E. 1980. Physiological ecology of mosses. In: Taylor R. J. & Leviton A. E. (eds), The mosses of North America. pp. 77–113. Pac. Div. Am. Assoc. Adv. Sci., San Fransisco.

    Google Scholar 

  • Lutz, H. F. 1956. Ecological effects of forest fires in the interior of Alaska. USDA Tech. Bull., No. 1133.

  • Oechel W. C. & Lawrence W. T. 1985. Taiga. In: Chabot B. F. & Mooney H. A. (eds), Physiological ecology of North American plant communities. pp. 66–94. Chapman and Hall, New York.

    Google Scholar 

  • Oechel W. C. & Van Cleve K. 1986. The role of bryophytes in nutrient cycling in the taiga. In: Van Cleve K., Chapin F. S., Flanagan P. W., Viereck L. A., & Dyrness C. T. (eds), Forest ecosystems in the Alaskan taiga. pp. 121–137. Springer-Verlag, New York.

    Google Scholar 

  • Skre O. & Oechel W. C. 1979. Moss production in a black sprucePicea mariana forest with permafrost near Fairbanks, Alaska, as compared with two permafrost-free stands. Holarct. Ecol. 2: 249–254.

    Google Scholar 

  • Skre O. & Oechel W. C. 1981. Moss functioning in different taiga ecosystems of interior Alaska. I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns. Oecologia 48: 50–59.

    Google Scholar 

  • Shugart H. H. 1984. A theory of forest dynamics. Springer-Verlag, New York.

    Google Scholar 

  • Tamm C. O. 1953. Growth, yield and nutrition in carpets of a forest moss (Hylocomium splendens). Medd. Statens Skogsfors. 43: 1–140.

    Google Scholar 

  • Tamm C. O. 1964. Growth ofHylocomium splendens in relation to tree canopy. Bryologist 67: 423–426.

    Google Scholar 

  • Tamm O. 1950. Northern coniferous forest soils. Scrivener, Oxford.

    Google Scholar 

  • Tarkhova T. N. & Ipatov V. S. 1975. Effect of illumination and litter on the development of some moss species. Soviet J. Ecol. 6: 43–48.

    Google Scholar 

  • Taylor S. J., Carleton T. J. & Adams P. 1987. Understorey vegetation change in aPicea mariana chronosequence. Vegetatio 73: 63–72.

    Google Scholar 

  • Tryon P. R. & Chapin F. S. 1983. Temperature control over root growth and root biomass in taiga forest trees. Can. J. For. Res. 13: 827–833.

    Google Scholar 

  • Van Cleve K., Barney R. & Schlentner R. 1981. Evidence of temperature control of production and nutrient cycling in two interior Alaska black spruce ecosystems. Can. J. For. Res. 11: 258–273.

    Google Scholar 

  • Van Cleve K., Oliver L., Schlentner R., Viereck L. A. & Dyrness C. T. 1983. Productivity and nutrient cycling in taiga forest ecosystems. Can. J. For. Res. 13: 747–766.

    Google Scholar 

  • Van Cleve K. & Viereck L. A. 1981. Forest succession in relation to nutrient cycling in the boreal forest of Alaska. In: West D. C., Shugart H. H., & Botkin D. B. (eds), Forest succession: concepts and applications. pp. 185–211. Springer-Verlag, New York.

    Google Scholar 

  • Van Cleve K. & Yarie J. 1986. Interaction of temperature, moisture, and soil chemistry in controlling nutrient cycling and ecosystem development in the taiga of Alaska. In: Van Cleve K., Chapin F. S., Flanagan P. W., Viereck L. A., & Dyrness C. T. (eds), Forest ecosystems in the Alaskan taiga. pp. 160–189. Springer-Verlag, New York.

    Google Scholar 

  • Viereck L. A. 1973. Wildfire in the taiga of Alaska. Quat. Res. 3: 465–495.

    Google Scholar 

  • Viereck L. A. 1983. The effects of fire in black spruce ecosystems of Alaska and northern Canada. In: Wein R. W., & MacLean D. A. (eds), The role of fire in northern circumpolar ecosystems. pp. 201–220. Wiley, New York.

    Google Scholar 

  • Viereck L. A., Dyrness C. T., Van Cleve K. & Foote M. J. 1983. Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Can. J. For. Res. 13: 703–720.

    Google Scholar 

  • Viereck L. A., Van Cleve K. & Dyrness C. T. 1986. Forest ecosystem distribution in the taiga environment. In: Van Cleve K., Chapin F. S., Flanagan P. W., Viereck L. A. & Dyrness C. T. (eds), Forest ecosystems in the Alaskan taiga. pp. 22–43. Springer-Verlag, New York.

    Google Scholar 

  • Weetman G. 1968. The relationship between feathermoss growth and the nutrition of black spruce. In: Lafleur C., & Butler J., (eds), Proc. third inter. peat conf. pp. 366–370. Nat. Res. Coun. Canada, Ottawa.

    Google Scholar 

  • Wilde S. A. & Krause H. H. 1960. Soil-forest types of the Yukon and Tanana Valleys in subarctic Alaska. J. Soil. Sci. 11: 266–274.

    Google Scholar 

  • Wolff J. O., West S. D. & Viereck L. A. 1977. Xylem pressure potential in black spruce in interior Alaska. Can. J. For. Res. 7: 422–428.

    Google Scholar 

  • Zasada J. C. 1971. Natural regeneration of interior Alaska forests: seed, seedbed, and vegetative reproduction considerations. In: Slaughter C. W., Barney R. J., & Hansen G. M., (eds), Fire in the northern environment: a symposium. pp. 231–246. USDA For. Serv., Portland, OR.

    Google Scholar 

  • Zasada J. 1986. Natural regeneration of trees and tall shrubs on forest sites in interior Alaska. In: Van Cleve K., Chapin F. S., Flanagan P. W., Viereck L. A., & Dyrness C. T. (eds), Forest ecosystems in the Alaskan taiga. pp. 44–73. Springer-Verlag, New York.

    Google Scholar 

  • Zasada J. C., Norum R. A., Teutsch C. E. & Densmore R. 1987. Survival and growth of planted black spruce, alder, aspen and willow after fire on black spruce/feathermoss sites in interior Alaska. For. Chron. 63: 84–88.

    Google Scholar 

  • Zasada J. C., Norum R. A., Van Veldhuizen R. M. & Teutsch C. E. 1983. Artifical regeneration of trees and tall shrubs in experimentally burned upland black spruce/feathermoss stands in Alaska. Can. J. For. Res. 13: 903–913.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonan, G.B., Korzuhin, M.D. Simulation of moss and tree dynamics in the boreal forests of interior Alaska. Vegetatio 84, 31–44 (1989). https://doi.org/10.1007/BF00054663

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054663

Keywords

Navigation