Skip to main content
Log in

Stability and secondary bifurcation for von Kármán plates

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Summary

The Movchan-Liapunov theorem is used to establish a sufficiency criterion for stability of equilibrium configurations of the von Kármán plate under edge loads and displacements. This criterion is used to characterize the possible occurrence of secondary bifurcation from the first buckled state of the perfect plate. A Koiter-Fitch post-bifurcation analysis of the secondary solution leads to a tentative explanation of the mode-jumping phenomenon that is observed experimentally. A numerical study of the rectangular plate for various aspect ratios is given. For this example, the base solution is represented as a perturbation power series in an appropriate load parameter.

Zusammenfassung

Der Movchan-Liapunov Lehrsatz wird benutzt, um ein Zulänglichkeitskriterion für die Stabilität von Gleichgewichtskonfigurationen der von Kármán Platte bei Randbelastungen und Verschiebungen herzustellen. Dieses Kriterion wird benutzt, um den möglichen Eintritt sekundärer Gabelung vom ersten verbogenen Zustand der perfekten Platte zu charakterisieren. Eine Koiter-Fitch Nachgabelungsanalyse der Sekundärlösung führt zu einer tentativen Erklärung des sprunghaften Konfigurationswechsels, den man experimentell beobachtet. Eine numerische Untersuchung der rechteckigen Platte für verschiedene Längenverhältnisse ist gegeben. Für diese Beispiele wird die Primärlösung als Störungspotenzreihe im angemessenen Belastungsparameter gegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Movchan A. A., The Direct Method of Liapunov in Stability Problems of Elastic Systems, J. Appl. Math. Mech. 23 (1959) 686–700.

    Google Scholar 

  2. Knops R. J. and Wilkes E. W., On Movchan's Theorems for Stability of Continuous Systems, Internat. J. Engrg. Sci. 4 (1966) 303–329.

    Google Scholar 

  3. Shield R. T. and Green A. E., On certain methods in the stability theory of continuous systems. Arch. Rational Mech. Anal. 12 (1963) 354–360.

    Google Scholar 

  4. Shield R. T., On the stability of linear continuous systems, Z. Angew. Math. Phys. 16 (1965) 649–686

    Google Scholar 

  5. Berger M. S., On von Kármán's Equations and the Buckling of a Thin Elastic Plate, I: The Clamped Plate, Comm. Pure Appl. Math. 20 (1967) 687–719.

    Google Scholar 

  6. Berger M. S. and Fife P. C., Von Kármán's Equations and the Buckling of a Thin Elastic Plate, II: Plate with General Edge Conditions, Comm. Pure Appl. Math. 21 (1968) 227–241.

    Google Scholar 

  7. Stein, M., Loads and Deformation of Buckled Rectangular Plates, NASA Tech. Rep. R-40 (1959) 27 pp.

  8. Vol'mir, A. S., Flexible Plates and Shells (Translation), Air Force Flight Dynamics Laboratory, AFFDLTR- 66-216 (1967).

  9. Ojalvo, M. and Hull, F. H., Effective Width of Thin Rectangular Plates, J. Engrg. Mech. Div., ASCE 84, (1958) EM 3, Paper #1718.

  10. Supple W. J. and Chilver A. H., Elastic Post-buckling of Compressed Rectangular Plates pp. 136–152 in: Thin-Walled Structures, A. H. Chilver, Ed., New York: Wiley 1967.

    Google Scholar 

  11. Bauer L. and Reiss E. L., Nonlinear buckling of rectangular plates, J. Soc. Indust. Appl. Math. 13 (1965) 603–627.

    Google Scholar 

  12. Djubek J., Equilibrium bifurcation of elastic plates subject to large deflections, Internat. J. Non-Linear Mech. 3 (1968) 227–243.

    Google Scholar 

  13. Chang Y. W. and Masur E. F., Vibrations and Stability of Buckled Panels, J. Engrg. Mech. Div., ASCE 91 (1965) EM 5, 1–26.

    Google Scholar 

  14. Yanowitch M., Non-Linear Buckling of Circular Elastic Plates, Comm. Pure Appl. Math. 9 (1956) 661–672.

    Google Scholar 

  15. Friedrichs K. O. and Stoker J. J., The Non-Linear Boundary Value Problem of the Buckled Plate, Amer. J. Math. 63 (1941) 839–888.

    Google Scholar 

  16. Friedrichs K. O. and Stoker J. J., Buckling of the Circular Plate Beyond the Critical Thrust J. Appl. Mech. 9 (1942) A-7-A-14.

    Google Scholar 

  17. Berger M. S., On the Existence of Equilibrium States of Thin Elastic Shells (I) Indiana Univ. Math. J. 20 (1971) 591–602.

    Google Scholar 

  18. Hsu C. S., and Lee S. S., Stability of Doubly Periodic Deformed Configurations of Plates and Shallow Shells, J. Appl. Mech. 37 (1970) 641–650.

    Google Scholar 

  19. Lee S. S. and Hsu C. S., Stability of Saddle-Like Deformed Configurations of Plates and Shallow Shells, Internat. J. Non-Linear Mech. 6 (1971) 221–236.

    Google Scholar 

  20. Foppl, A., Vorlesungen über technische Mechanik, Bd. 5, Leipzig 1907.

  21. Kármán T. V., Festigkeitsprobleme im Maschinenbau, Ency. d. Math. Wiss., IV-4, 348–352, Leipzig 1910.

    Google Scholar 

  22. Fung Y. C., Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, N.J. 1965.

    Google Scholar 

  23. Reissner E., On transverse vibrations of thin shallow shells, Quart. Appl. Math. 13 (1955) 169–176.

    Google Scholar 

  24. Stroebel, G. J., Ph. D. Thesis, University of Minnesota 1969.

  25. Mikhlin S. G., Variational Methods in Mathematical Physics, Pergamon: New York 1964.

    Google Scholar 

  26. Rogers E. H., Variational Properties of Nonlinear Spectra, J. Math. Mech. 18 (1968) 479–490.

    Google Scholar 

  27. Koiter, W. T., On the stability of elastic equilibrium (Dutch.) Thesis, Delft. H. J. Paris 1945.

  28. Koiter W. T., Elastic stability and post-buckling behavior, pp. 257–274 in: Proc. Symp. Nonlinear Problems, R. E. Langer, Ed., Univ. of Wisconsin Press Madison 1963.

    Google Scholar 

  29. Budiansky, B. and Hutchinson, J. W., Dynamic buckling of imperfection sensitive structures, Proc. 11th Int. Congr. Appl. Mech. (1964) 636–651.

  30. Fitch H. R., The buckling and post-buckling behavior of spherical caps under concentrated load, Internat. J. Solids Struct. 4 (1968) 421–446.

    Google Scholar 

  31. Thompson J. M. T., Basic principles in the general theory of elastic stability, Jour. Mech. Phys. Solids 11 (1963) 13–20.

    Google Scholar 

  32. Levy, S., Bending of Rectangular Plates with Large Deflections, NACA Technical Report 737 (1942) 19 pp.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based in part upon the thesis submitted by the first author to the University of Minnesota in partial fulfillment of the requirements for the Ph. D. degree. Support given by a NASA traineeship is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroebel, G.J., Warner, W.H. Stability and secondary bifurcation for von Kármán plates. J Elasticity 3, 185–202 (1973). https://doi.org/10.1007/BF00052893

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052893

Keywords

Navigation