Skip to main content
Log in

Sampling variation in genetic resources of seed crops: a review

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Summary

The first explorations for the collection of genetic resources of crop plants took place in areas designated as centers of origin. Later, important characters were found to be present in areas other than those indicated by Vavilov. Hence collection missions were extended to cover other areas in addition to the “centers of diversity” with different ecogeography and agromorphological features. Collecting activities were aimed not only at providing germplasm for immediate use in breeding but also at conserving genetic variation for future contingencies. The analysis of the collected material has revealed the complex nature, amount and distribution of genetic variation present in natural populations as well as in landraces, old varieties and primitive forms. The study of variation for characters from different regions indicated that it is possible to select certain characters for detecting variability in the populations and establishing the minimum number of genotypes to be sampled. A minimum number of 20–130 plants per sample, depending on the crop, is recommended in order to capture 95% of the total variation in the field. However, it has been emphasized that the number of different populations sampled rather than the sample size per population determines the overall efficiency of a collection. The findings reported allow better utilization of the collected material and formulation of optimal and cost-effective sampling strategies for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adary, A.M., 1978. Genetic Variation in Landraces of Durum Wheat and its Value in Durum Wheat Improvement. Ph.D. Thesis, Univ. of California, Davis, Calif.

    Google Scholar 

  • Allard, R.W., 1965. Genetic systems associated with colonizing ability in predominantly self-pollinated species. In: H.G. Baker & G.L. Stebbins (Eds), The Genetics of Colonizing Species, pp. 49–75, Academic Press, New York.

    Google Scholar 

  • Allard, R.W., 1970. Population structure and sampling methods. In: O.H. Frankel & E. Bennett (Eds), Genetic Resources in Plants-their Exploration and Conservation, pp. 97–107, Blackwell, Oxford.

    Google Scholar 

  • Allard, R.W., S.K. Jain & P.L. Workman, 1966. The genetics of inbreeding populations. Adv. Genet. 14: 55–131.

    Google Scholar 

  • Allard, R.W. & J. Adams, 1969. Population studies in selfpollinated species. Intergenotypic competition and population structure in barley and wheat. American Naturalist 103: 621–645.

    Google Scholar 

  • Allard, R.W., A.L. Kahler & B.S. Weir, 1971. Isozyme polymorphisms in barley populations. In: R.A. Nilan, (Ed.), Barley Genetics II, pp. 1–13, Wash. State Univ. Press, Pullman.

    Google Scholar 

  • Allard, R.W., G.R. Babbel, M.T. Clegg & A.L. Kahler, 1972. Evidence for coadaptation in Avena barbata. Proc. Natl. Acad. Sci. USA. 69: 3034–3048.

    Google Scholar 

  • Ashri, A., 1973. Divergence and evolution in the safflower genus Carthamus L. Final research report USDA PL 480 Project, Jerusalem.

  • Benjasil, V., 1968. Effects of Mass Selection for Quantitative Traits in Sorghum. Ph.D. Thesis, Univ. of California, Davis, Calif.

    Google Scholar 

  • Bennett, E., 1970. Tactics of plant exploration. In: O.H. Frankel & E. Bennett (Eds), Genetic Resources in Plantstheir Exploration and Conservation, pp. 157–188, Blackwell, Oxford.

    Google Scholar 

  • Bogyo, T.P., E. Porceddu & P. Perrino, 1980. Analysis of sampling strategies for collecting genetic material. Economic Botany 34: 160–174.

    Google Scholar 

  • Bonciarelli, F., 1961. Studio comparato delle popolazioni umbre di mais. Maydica 6: 35–61 [In Italian].

    Google Scholar 

  • Bradshaw, A.D., 1975. Population structure and the effects of isolation and selection. In: O.H. Frankel & J.G. Hawkes (Eds), Crop Genetic Resources for Today and Tomorrow, pp. 37–52, Cambridge University Press, Cambridge.

    Google Scholar 

  • Brandolini, A., 1970. Maize. In: O.H. Frankel & E. Bennett (Eds), Gentic resources in Plants-their Exploration and Conservation, pp. 273–310, Blackwell, Oxford.

    Google Scholar 

  • Brown, A.H.D., 1978. Isozymes, plant population, genetic structure and genetic conservation. Theor. Appl. Genet. 52: 145–157.

    Google Scholar 

  • Brown, A.H.D., E. Nevo & D. Zohary, 1977. Association of alleles at esterase loci in wild barley Hordeum spontaneum. Nature 268: 430–431.

    Google Scholar 

  • Ceccarelli, S. & E. Ottaviano, 1967. Analisi genetica della variabilita continua in Chelidonium majus L. Rend. Classe di Scienze B, 101: 477–497.

    Google Scholar 

  • Chang, T.T., 1985. Collection of crop germplasm. Iowa State J. Res. 59: 349–364.

    Google Scholar 

  • Clegg, M.T., R.W. Allard & A.L. Kahler, 1972. Is the gene the unit of selection? Evidence from two experimental populations. Proc. Nat. Acad. Sci., USA. 69: 2447–2478.

    Google Scholar 

  • Cochran, W.G., 1963. Sampling Techniques. Second edition. John Wiley, New York.

    Google Scholar 

  • Creech, J.L. & L.P. Reitz, 1971. Plant germ plasm now and for tomorrow. Adv. Agronomy 23: 1–49.

    Google Scholar 

  • Damania, A.B., 1987. Sampling cereal diversity in Morocco. Plant Genetic Resources Newslt. 72: 29–30.

    Google Scholar 

  • Damania, A.B., 1989a. Crop Genetic Resources Sampling: A Training Handbook for Germplasm Collection. ICARDA, Aleppo.

    Google Scholar 

  • Damania, A.B., 1989b. Genetic resources of wild relatives in cereal crops. I. Germplasm sampling strategy. Rachis 8(1): 8–10.

    Google Scholar 

  • Damania, A.B. & E. Porceddu, 1983. Variation in landraces of Turgidum and bread wheats and sampling strategies for collecting wheat genetic resources. In: S. Sakamoto (Ed.), Proc. Sixth Intl. Wheat Genetics Symp., pp. 123–136, Plant Germplasm Institute, Kyoto.

    Google Scholar 

  • Debouck, D.G., 1988. Phaseolus germplasm exploration. In: P. Gepts (Ed.), Genetic Resources of Phaseolus Beans: their Maintenance, Domestication, Evolution, and Utilization, pp. 3–29, Kluwer, Dordrecht.

    Google Scholar 

  • Dempster, E.R., 1955. Maintenance of genetic heterogeneity. Cold Spring Harbor Symp. Quant. Biol. 20: 25–32.

    Google Scholar 

  • Drayner, J.M., 1959. Self and cross-fertility in field beans (Vicia faba L.). J. Agric. Sci. Cambridge 53: 387–402.

    Google Scholar 

  • Elings, A., 1991. Durum wheat landraces from Syria. II. Patterns of variation. Euphytica 54: 231–243.

    Google Scholar 

  • Frost, S., G. Holm & S. Asker, 1975. Flavonoid patterns and the phylogeny of barley. Hereditas 79: 133–142.

    Google Scholar 

  • Harding, J., R.W. Allard & D.G. Smeltzer, 1966. Population studies in predominantly self-pollinated species. IX. Frequency dependent selection in Phaseolus lunatus. Proc. Nat. Acad. Sci., USA. 56: 99–104.

    Google Scholar 

  • Harlan, J.R., 1970. Evolution of cultivated plants. In: O.H. Frankel & E. Bennett (Eds), Genetic Resources in Plants—their Exploration and Conservation, pp. 19–32, Blackwell, Oxford.

    Google Scholar 

  • Harlan, J.R., 1971. Agricultural origins: centers and noncenters. Science 174: 468–474.

    Google Scholar 

  • Harlan, J.R., 1975. Seed crops. In: O.H. Frankel & J.G. Hawkes (Eds), Crop Genetic Resources for Today and Tomorrow, pp. 111–116, Cambridge University Press, Cambridge.

    Google Scholar 

  • Harlan, J.R., 1986. Plant domestication: diffuse origin and diffusion. In: C. Barigozzi (Ed.), The Origin and Domestication of Cultivated Plants, pp. 21–34, Elsevier, Amsterdam.

    Google Scholar 

  • Hayman, B.I., 1953. Mixed selling and random mating when homozygotes are at disadvantage. Heredity 7: 185–192.

    Google Scholar 

  • Hartley, W., 1963. The phytogeographic basis of pasture plant introduction. Genetica Agraria 17: 135–146.

    Google Scholar 

  • Hussaini, S.H., M.M. Goodman & D.H. Timothy, 1977. Multivariate analysis and the geographical distribution of the world collection of finger millet. Crop Science 17: 257–263.

    Google Scholar 

  • ICARDA, 1991. Genetic Resources Unit—Annual Report for 1991. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria.

    Google Scholar 

  • Imam, A.G. & R.W. Allard, 1965. Population studies in predominantly self-pollinated species. VI. Genetic variability between and within natural populations of wild oats from differing habits in California. Genetics 51: 49–62.

    Google Scholar 

  • Jain, S.K. & R.W. Allard, 1960. Population studies in predominantly self-pollinated species. I. Evidence of heterozygote advantage in a closed population of barley. Proc. Nat. Acad. Sci. USA. 46: 1371–1377.

    Google Scholar 

  • Jain, S.K. & D.R. Marshall, 1967. Population studies in predominantly self-pollinated species. X. Variation in natural population of Avena fatua and A. barbata. American Naturalist 101: 19–33.

    Google Scholar 

  • Jain, S.K., C.O. Qualset, G.M. Bhatt & K.K. Wu, 1975. Geographical patterns of phenotypic diversity in a world collection of Durum wheats. Crop Science 15: 700–704.

    Google Scholar 

  • Jana, S., 1988. Collecting crop germplasm during exploration: bulk samples or individual plants? FGRC Newslt. 24: 5–7.

    Google Scholar 

  • Jana, S. & B. S. Khangura, 1986. Conservation of diversity in bulk populations of barley (Hordeum vulgare L.). Euphytica 35: 761–776.

    Google Scholar 

  • Johannsen, W., 1926. Elemente der Exakten Erblichkeitslehre. 3rd edition, Fisher, Jena.

    Google Scholar 

  • Knowles, P.F., 1943. Improving an annual bromegrass, Bromus mollis L., for range purposes. J. Am. Soc. Agron. 35: 584–594.

    Google Scholar 

  • Lafiandra, D., G.B. Polignano, A. Filippetti & E. Porceddu, 1981. Genetic variability for protein content and s-aminoacids in broad beans (Vicia faba L.). Die Kulturpflanze 29: 115–127.

    Google Scholar 

  • Marshall, D.R. & A.H.D. Brown, A. H. D. 1975. Optimum sampling strategies in genetic conservation. In: O.H. Frankel & J.G. Hawkes (Eds), Crop genetic Resources for Today and Tomorrow, pp. 53–80, Cambridge University Press, Cambridge.

    Google Scholar 

  • Murphy, B.R. & V. Arunachalam, 1966. The nature of divergence in relation to breeding system in some crop plants. Indian J. Genet. 26: 188–198.

    Google Scholar 

  • Nakagahra, M., T. Akihama & K. Hayashi, 1975. Genetic and geographic cline of esterase isozymes in native rice varieties. Japan J. Genet. 50: 373–382.

    Google Scholar 

  • Narayan, R.K.J. & A.J. Macefield, 1976. Adaptive responses and genetic divergence in a world germplasm collection of chickpea (Cicer arietinum L.). Theor. Appl. Genet. 47: 179–187.

    Google Scholar 

  • Nevo, E., A.H.D. Brown & M. Habez, 1979. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum. Evolution 33: 815–1179.

    Google Scholar 

  • O'Donald, P., 1960. Assortative mating in a population in which two alleles are segregating. Heredity 15: 389–396.

    Google Scholar 

  • Oka, H.I., 1975. Consideration on the population size necessary for conservation of crop germplasms. In: (Ed.), T. Matsuo, Gene Conservation-Exploration, Collection, Preservation and Utilization of Genetic Resources, pp. 57–63, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Pathak, R.S. & C.P. Bindlish, 1976. Studies on the nature of genetic divergence in upland cotton (Gossypium hirsutum L.). Z. Pflanzenzuctg. 76: 56–67.

    Google Scholar 

  • Porceddu, E., 1976. Variation for agronomical traits in a world collection of Durum wheat. Z. Pflanzenzuchtg. 77: 314–329.

    Google Scholar 

  • Porceddu, E., 1979. Genetic variability in durum wheat germplasm of different origins. In: Monografia IV di Genetica Agraria: 39–70.

  • Porceddu, E., L.M. Monti, L. Frusciante & N. Volpe, 1980. Analysis of cross-pollination in Vicia faba L. Z. Pflanzenzüchtg. 84: 313–322.

    Google Scholar 

  • Qualset, C.O., 1968. Population structure and performance in wheat. In: K.W. Finlay & K.W. Shepherd (Eds), Proc. Third Intl. Wheat Genetics Symp., pp. 397–402, Australian Academy of Science, Canberra.

    Google Scholar 

  • Qualset, C.O., 1975. Sampling germplasm in a center of diversity: an example of disease resistance in Ethiopian barley. In: O.H. Frankel & J.G. Hawkes (Eds), Crop Genetic Resources for Today and Tomorrow, pp. 81–96, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rao, A.R., 1977. Distribution patterns of indigenous wheat varieties in northern Pakistan. In: A. Muhammed, R. Aksel & R.C. von Borstel (Eds), Genetic Diversity in Plants, pp. 51–66, Plenum Press, New York.

    Google Scholar 

  • Rick, C.M., R.W. Zobel & J.F. Fobes, 1974. Four peroxidase loci in red-fruited tomato species: Genetics and geographical distribution. Proc. Nat. Acad. Sci., USA. 71: 835–839.

    Google Scholar 

  • Shutz, W.M. & S.A. Usanis, 1969. Inter-genotypic interactions in plant populations. II. Maintenance of allelic polymorphisms with frequency dependent selection and mix selfing and random mating. Genetics 61: 875–891.

    Google Scholar 

  • Spagnoletti-Zeuli, P.-L., C. De Pace & E. Porceddu, 1984. Variation in durum wheat populations from three geographic regions. I. Material and spike characteristics. Euphytica 33: 563–575.

    Google Scholar 

  • Vavilov, N.I., 1926. Studies on the origin of cultivated plants. Institute of Applied Plant Breeding and Botany 16: 139–248 (In Russian).

    Google Scholar 

  • Vavilov, N.I., 1951. Phytogeographic basis of plant breeding. In: The Origin, Variation, Immunity and Breeding of Cultivated Plants. (Transl. K.S. Chester) Chronica Bot. 13: 14–54.

  • Weir, B.S., R.W. Allard & A.L. Kahler, 1974. Further analysis of complex allozyme polymorphisms in a barley population. Genetics 78: 911–919.

    Google Scholar 

  • Witcombe, J.R. & M.M. Gilani, 1979. Variation in cereals from the Himalayas and the optimum strategy for sampling plant germplasm. J. Appl. Ecology 16: 633–640.

    Google Scholar 

  • Workmann, P.L. & S.K. Jain, 1966. Zygotic selection under mixed random mating and self-fertilization: theory and problems of estimation. Genetics 54: 159–171.

    Google Scholar 

  • Yamashita, K., 1980. Origin and dispersion of wheats with special references to peripheral diversity. Z. Pflanzenzüchtg. 84: 122–132.

    Google Scholar 

  • Yonezawa, K., 1985. A definition of the optimal allocation of effort in conservation of plant genetic resources-with application to sample size determination for field collection. Euphytica 34: 345–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porceddu, E., Damania, A.B. Sampling variation in genetic resources of seed crops: a review. Genet Resour Crop Evol 39, 39–49 (1992). https://doi.org/10.1007/BF00052652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052652

Key words

Navigation