Skip to main content
Log in

Schoenus vegetation and environmental conditions in South and Southeast Sweden

  • Published:
Vegetatio Aims and scope Submit manuscript

Summary

The relations between the Schoenus phytocoena and their site conditions are elucidated by stand and species ordinations (ORDINA, RA) and by comparisons of ordinations of environmental variables alone and ordination of the combined environmental and species variables (RA). Correlations between the environmental variables show that they may be gathered into two contrasting groups, the carbon and the carbonate groupings, respectively. This first direction of variation is related to hydrological conditions causing the differences in thickness of organic soils, content of organic carbon and dry weight of intact soil per unit volume. The second direction of variation is associated with a nutrient factor complex, in this study represented by available phosphate.

The carbon grouping and a constantly high level of mainly topogeneous soil water is typical of sites of the Oxycoccus-Schoenus association. The Sesleria group of the Primula-Schoenus association is related to sites with a periodically low table of topogeneous or soligeneous soil water and mineral or mucky soils with high values of carbonate content, pH and CEC and a fairly low nutrient state, while the sites of the Bartsia-Ophrys and Valeriana groups have a fairly high level of mainly soligeneous soil water and mucky soils with variable carbonate content, intermediate pH and CEC and somewhat higher nutrient state. Periodically flooded sites with topogeneous soil water and mineral soils are typical of the Cladium-Schoenus nigricans, Schoenus intermedius-Schoenus ferrugineus and Glaux phytocoena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander T.G. & J.A. Robertsson. 1970. Ascorbic acid as a reductant for inorganic phosphorous determinations in Chang and Jackson's fractionation procedure. Soil Sci. 110:361–362.

    Google Scholar 

  • Austin M.P. 1976a. On non-linear species response models in ordination. Vegetatio 33:33–41.

    Google Scholar 

  • Austin M.P. 1976b. Performance of four ordination techniques assuming three different non-linear species response models. Vegetatio 33:43–49.

    Google Scholar 

  • Austin M.P. & I. Noy-Meir. 1971. The problem of nonlinearity in ordination: experiments with two gradient models. J. Ecol. 59:763–773.

    Google Scholar 

  • Bates J.W. 1975. A quantitative investigation of the saxicolous bryophytes and lichen vegetation of Cape Clear Island, County Cork. J. Ecol. 63:143–162.

    Google Scholar 

  • Beals E.W. 1973. Ordination: mathematical elegance and ecological naiveté. J. Ecol. 61:23–35.

    Google Scholar 

  • Boeker P. 1957. Basenversorgung und Humusgehalt von Böden der Pflanzengesellschaften des Grünlandes. Descheniana Beih. 4: 1–101. Bonn.

    Google Scholar 

  • Bouxin G. 1975. Ordination and classification in the savanna vegetation of the Akagera park (Rwanda, Central Africa). Vegetatio 29:155–167.

    Google Scholar 

  • Bouxin G. 1976. Ordination and classification in the Upland Rugege Forest (Rwanda, Central Africa). Vegetatio 32: 97–115.

    Google Scholar 

  • Bunce R.G.H. 1968. An ecological study of Ysgolion Duon, a mountain cliff in Snowdonia. J. Ecol. 56:59–75.

    Google Scholar 

  • Bundy L.G. & J.M. Bremner. 1972. A simple titrimetric method for determination of inorganic carbon in soils. Soil Sci. Soc. Amer. Proc. 36:273–275.

    Google Scholar 

  • Clymo R.S. 1962. An experimental approach to part of the calcicole problem. J. Ecol. 50: 707–731.

    Google Scholar 

  • Dale M.B. (1975). On objectives of methods of ordination. Vegetatio 30:15–32.

    Google Scholar 

  • Du Rietz G.E. 1949. Huvudenheter och huvudgränser i svensk myrvegetation (Main units and main limits in Swedish mire vegetation). Svensk Bot. Tidskr. 43:274–309.

    Google Scholar 

  • Du Rietz G.E. 1954. Die Mineralbodenwasserzeigergrenze als Grundlage einer natürlichen Zweigliederung der nord- und mitteleuropäischen Moore. Vegetatio 5–6:571–585.

    Google Scholar 

  • Du Rietz, G.E. 1959. Dalamyrarna vid Klagstorpsån. In: N.G. Karsvik (ed.), Från Falbygd till Vänerkust, p. 273–290. Lidköping.

  • Eicke-Jenne J. 1960. Sukzessionstudien in der Vegetation des Ammersees in Oberbayern. Bot. Jahrb. Syst. Pflanzengesch. Pflanzengeogr. 79:447–520.

    Google Scholar 

  • Ellenberg H. 1952. Landwirtschaftliche Pflanzensoziologie. II. Wiesen und Weiden und ihre standörtliche Bewertung. Ulmers, Stuttgart, 143 pp.

    Google Scholar 

  • Ellenberg, H. 1974. Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobot. IX, Göttingen, 97 pp.

  • Enwezor W.O. 1977. Soil testing for phosphorous in some Nigerian soils: I. Comparison of methods of determining available phosphorous in soils of Southeastern Nigeria. Soil Sci. 123(1): 48–53.

    Google Scholar 

  • Ferrari Th.J., H. Pijl & J.T.N. Venekamp 1957. Factor analysis in agricultural research. Netherlands J. Agric. Sci. 5 211–221.

    Google Scholar 

  • Gauch H.G.Jr. & T.R. Wentworth. 1976. Canonical correlation analysis as an ordination technique. Vegetatio 33: 17–22.

    Google Scholar 

  • Gittins R. 1969. The application of ordination techniques. In: I.H. Rorison et al. (ed.), Ecological Aspects of the Mineral Nutrition of Plants, p. 37–66. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Goldsmith F.B. 1973. The vegetation of exposed sea cliffs at South Stark, Anglesey. I. The multivariate approach. J. Ecol. 61: 787–818.

    Google Scholar 

  • Gorham E. 1952. Variation in some chemical features along the borders of a Carex lasiocarpa fen community. Oikos 2:217–240.

    Google Scholar 

  • Gower J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338.

    Google Scholar 

  • Göttlich K. 1965. Ergebnisse und Ziele bodenkundlicher Studien in Moor und Anmoor. Arb. Landwirtsch. Hochsch. 33:1–122, Hohenheim.

    Google Scholar 

  • Hill M.O. 1973a. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61:237–249.

    Google Scholar 

  • Jackson M.L. 1958. Soil chemical analysis. Prentice-Hall Inc., Englewood Cliffs, N.J., 498 pp.

    Google Scholar 

  • Jeglum J.K., C.F. Wehrhahn & J.M.A. Swan. 1971. Comparisons of environmental ordinations with principal component vegetational ordinations for sets of data having different degrees of complexity. Canad. J. For. Res. 1:99–112.

    Google Scholar 

  • John M.K. 1970. Colorimetric determination of phosphorous in soil and plant materials with ascorbic acid. Soil Sci. 109:214–220.

    Google Scholar 

  • Kask, M. 1965. Vegetation of the Avaste Mire of West Estonia (Russian, with summary) Akad. Nauk Est. SSR Zool. Bot. 538, Tartu, 100 pp.

  • Kononova M.M. 1966. Soil organic matter. 2nd ed. Pergamon, Oxford.

    Google Scholar 

  • Kubiëna W.L. 1953. Bestimmungsbuch und Systematik der Böden Europas. F. Enke, Stuttgart, 388 pp.

    Google Scholar 

  • Landolt, E. 1977. Ökologische Zeigerwerte zur Schweizer Flora. Veröff. Geobot. Inst. Eidg. Tech. Hochsch. Stift. Rübel, Zürich. 64, 208 pp.

  • Langer H. 1958. Die Vegetationsverhältnisse des Benninger Riedes und ihre Verknüpfung mit der Vegetationsgeschichte des Memminger Tales. Bot. Jahrb. Syst. Pflanzengesch. Pflanzengeogr. 77: 355–422. Stuttgart.

    Google Scholar 

  • Lötschert W. & C. Ullrich. 1961. Zur Frage jahreszeitlicher pH-Schwankungen an natürlichen Standorten. Flora 150: 657–674.

    Google Scholar 

  • Loucks O.L. 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecol. Monogr. 32:137–166.

    Google Scholar 

  • Malmer, N. 1962a. Studies on mire vegetation in the Archaean area of Southwestern Götaland (South Sweden) I. Vegetation and habitat conditions on the Åkhult mire. Opera Bot. 7:1, 322 pp.

  • Malmer, N. 1962b. Studies on mire vegetation in the Archaean area of Soutwestern Götaland (South Sweden) II. Distribution and seasonal variation in elementary constituents on some mire sites. Opera Bot. 7: 2. 67 pp.

    Google Scholar 

  • Malmer N. 1965. The southern mires. Acta Phytogeogr. Suec. 50:149–158.

    Google Scholar 

  • Malmer N. & H. Sjörs. 1955. Some determinations of elementary constituents in mire plant and peat. Bot. Notiser 108: 46–80.

    Google Scholar 

  • Mörnsjö, T. 1969. Studies on vegetation and development of a peatland in Scania, South Sweden. Opera Bot. 24, 187 pp.

    Google Scholar 

  • Nichols S. 1977. On the interpretation of principal components analysis in ecological contexts. Vegetatio 34: 191–197.

    Google Scholar 

  • Noy-Meir I. 1973a. Data transformations in ecological ordination. I. Some advantages of noncentering. J. Ecol. 61: 329–41.

    Google Scholar 

  • Noy-Meir I. & M.P. Austin. 1970. Principal component ordination and simulated vegetation data. Ecology 51:551–552.

    Google Scholar 

  • Noy-Meir I., D. Walter & W.T. Williams. 1975. Data transformations in ecological ordination. II. On the meaning of data standardization. J. Ecol. 63:779–800.

    Google Scholar 

  • Noy-Meir I. & R.H. Whittaker. 1977. Continuous multivariate methods in community analysis: some problems and development. Vegetatio 33:79–98.

    Google Scholar 

  • Orlóci L. 1966. Geometric models in ecology. I. The theory and application of some ordination methods. J. Ecol. 54: 193–215.

    Google Scholar 

  • Robertson P.A. 1978. Comparisons of techniques for ordinating and classifying old-growth floodplain forests in southern Illinois. Vegetatio 37: 43–51.

    Google Scholar 

  • Roskam, E. 1972. Program ordina: multidimensional ordination of observation vectors. Program-Bulletin 16, Dept. Mathematical Psychology, University of Nijmegen.

  • Semb G. & G. Uhlén. 1954. A comparison of sodium bicarbonate method and lactate method for determination of available phosphorous in the soils. Acta Agric. Scand 5:387–389. in Bergslagen, Sweden. Acta Phytogeogr. Suec. 21. 299 pp.

    Google Scholar 

  • Sjörs, H. 1948. Myrvegetation i Bergslagen Mire vegetation

  • Sjörs H. 1950. Regional studies in North Swedish mire vegetation. Bot. Notiser 103:173–222.

    Google Scholar 

  • Sjörs H. 1952. On the relation between vegetation and electrolytes in North Swedish mire waters. Oikos 2: 241–258.

    Google Scholar 

  • Sjörs, H. 1961. Some chemical properties of the hun us layer in Swedish natural soils. K. Skogshögsk. Skr. 37. Stockholm, 51 pp.

  • Sjörs H. 1971. Ekologisk botanik. Almqvist & Wiksell, Stockholm, 296 pp.

    Google Scholar 

  • Sparling J.H. 1967. The occurrence of Schoenus nigricans L. in blanket bogs. II. Experiments on the growth of S. nigricans under controlled conditions. J. Ecol. 55: 15–32.

    Google Scholar 

  • Stanek W. & J.K. Jeglum. 1977. Comparisons of peatland types using macro-nutrient contents of peat. Vegetatio 33:163–173.

    Google Scholar 

  • Steele B. 1955. Soil pH and base status as factors in the distribution of calcicoles. J. Ecol. 43:120–132.

    Google Scholar 

  • Trass H. 1957. The Schoenus, swamps in the Estonian SSR (Estonian, English summary). Esti NSV Tead. Akad. Toim. Biolog. 6:134–144. Tallin.

    Google Scholar 

  • Trass H. & N. Malmer, 1973. North European Approaches to Classification. In: Whittaker R.H. (ed.), Handbook of Vegetation Science, V: 287–321. Junk, The Hague.

    Google Scholar 

  • Tuomikoski R. 1942. Untersuchungen über die Vegetation der Bruchmoore in Ostfinnland. I. Zur Methodik der pflanzensoziologischen Systematik. Ann. Bot. Soc. Zool.-Bot. Fenn. ‘Vanamo’ 17 (1):1–203.

    Google Scholar 

  • Turner R.C. 1959. A theoretical treatment of the pH of calcareous soils. Soil Sci. 86:32–34.

    Google Scholar 

  • Tyler, C. 1979. Comments on vegetation and environment of Schoenus sites in South and Southeast Sweden. Medd. Växtekol. Inst. Lunds Univ. 38, Lund, 51 pp.

  • Tyler C. 1980. Classification of Schoenus communities in South and Southeast Sweden. Vegetatio 41: 69–85.

    Google Scholar 

  • Waldheim S. & H. Weimarck. 1943. Bidrag till Skånes flora. 18. Skånes myrtyper (Scanian mire-types). Bot. Notiser 96:1–40.

    Google Scholar 

  • Walker B.H. & C.F. Wehrhahn. 1971. Relationships between derived vegetation gradients and measured environmental variables in Saskatchewan wetlands. Ecology 52: 85–95

    Google Scholar 

  • Werger M.J.A., H. Wild & B.R. Drummond. 1978. Vegetation structure and substrate of the northern part of the Great Dyke, Rhodesia: Gradient analysis and dominance-diversity relationships. Vegetatio 37:151–161.

    Google Scholar 

  • Witting M. 1947. Katjonbestämningar i myrvatten (Cation determinations in mire waters), Bot. Notiser 100: 287–304.

    Google Scholar 

  • Witting M. 1948. Preliminärt meddelande om fortsatta katjonsbestämningar i myrvatten sommaren 1947 (Preliminary report on continued cation determinations in mire-waters in the summer of 1947). Svensk Bot. Tidskr. 42: 116–134.

    Google Scholar 

  • Zobrist, L. 1935. Pflanzensoziologische und bodenkundliche Untersuchung des Schoenetum nigricantis im nordost-schweizerischen Mittellande. Beitr. Geobot. Landesaufnahme der Schweiz 18. Bern, 144 pp.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nomenclature is the same as in Tyler (1980).

This study is part of my doctor's thesis. I am most grateful to Professor Nils Malmer, Head of the Department, for variable advice and discussions. My thanks are also rendered to Dr. E. van der Maarel, University of Nijmegen, The Netherlands, Dr. R.S. Clymo, Westfield College, University of London, Great Britain, Fil kand. Stefan Persson, Dr. Germund Tyler, Mrs Maj-Britt Larsson, Mrs Anita Balogh, Mrs Mimmi Varga, Mrs Kerstin Richter, and Mr Robert Dewsnap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyler, C. Schoenus vegetation and environmental conditions in South and Southeast Sweden. Vegetatio 41, 155–170 (1980). https://doi.org/10.1007/BF00052444

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052444

Keywords

Navigation