Skip to main content
Log in

Increasing CO2 and plant-plant interactions: effects on natural vegetation

  • Ecophysiological and Ecosystem Responses: Effects of CO2 Enrichment on Growth and Production
  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Plant species and functional groups of species show marked differences in photosynthesis and growth in relation to rising atmospheric CO2 concentrations through the range of the 30 % increase of the recent past and the 100 % increase since the last glaciation. A large shift was found in the compositional mix of 26 species of C3's and 17 species of C4's grown from a native soil seed bank in a competitive mode along a CO2 gradient that approximated the CO2 increase of the past 150 years and before. The biomass of C3's increased from near zero to 50 % of the total while that of the C4's was reduced 25 % as CO2 levels approached current ambient. The proposition that acclimation to rising CO2 will largely negate the fertilization effect of higher CO2 levels on C3's is not supported. No signs of photosynthetic acclimation were evident forAvena sativa, Prosopis glandulosa, andSchizachyrium scoparium plants grown in subambient CO2. The effects of changing CO2 levels on vegetation since the last glaciation are thought to have been at least as great, if not greater, than those which should be expected for a doubling of current CO2 levels. Atmospheric CO2 concentrations below 200 ppm are thought to have been instrumental in the rise of the C4 grasslands of North America and other extensive C4 grasslands and savannas of the world. Dramatic invasion of these areas by woody C3 species are accompanying the historical increase in atmospheric CO2 concentration now in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L. H.Jr., Bisbal, E. C., Boote, K. J., & Jones, P. H. 1991. Soybean dry matter allocation under subambient and superambient levels of carbon dioxide. Agron. J. 83: 875–883.

    Google Scholar 

  • Amthor, J. S. 1991. Respiration in a future, higher-CO2 world. Plant, Cell Environ. 14: 13–20.

    Google Scholar 

  • Baker, J. T., Allen, L. H.Jr., & Boote, K. J. 1990. Growth and yield responses of rice to carbon dioxide concentration. J. Agric. Sci. 115: 313–320.

    Google Scholar 

  • Barnola, J. M., Raynaud, D., Korotkevich, Y. S. and Larius, C. 1987. Vostock ice core provides 160,000-year record of atmospheric CO2. Nature 329: 408–414.

    Google Scholar 

  • Bazzaz, F. A., 1990. The response of natural ecosystems to the rising global CO2 levels. Ann. Rev. Ecol. & Syst. 21: 167–196.

    Google Scholar 

  • Black, C. C., Chen, T. M. & Brown, R. H. 1969. Biochemical basis for plant competition. Weed Sci. 17: 338–344.

    Google Scholar 

  • Blackman, V. H. 1919. The compound interest law of plant growth. Annals of Bot. 33: 353–360.

    Google Scholar 

  • Billings, W. D., Peterson, K. M., Luken, J. O. & Mortensen, D. A. 1984. Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65: 26–29.

    Google Scholar 

  • Bunce, J. A. 1990. Short-and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Annals of Bot. 65: 637–642.

    Google Scholar 

  • Campbell, W. J., Allen, L. H.Jr., & Bowes, G. 1988. Effects of CO2 concentration on rubisco activity, amount and photosynthesis in soybean leaves. Plant Physiol. 88: 1310–1316.

    Google Scholar 

  • Carlson, R. W. & Bazzaz, F. A. 1980. The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration and water use efficiency of plants. In: Singh, J. J. & Deeppak, A. (eds), Symposium on Environmental and Climatic Impact of Coal Utilization. Inst. for Atmos. Optics and Remote Sensing, pp 609–622. Hampton, VA, USA.

    Google Scholar 

  • Carter, D. R. & Peterson, K. M. 1983. Effects of CO2-enriched atmosphere on the growth and competitive interaction of a C3 and a C4 grass. Oecologia 58: 188–193.

    Google Scholar 

  • Correll, D. L. & Johnston, M. C. 1979. Manual of Vascular Plants of Texas. Univ. Texas Press, Dallas, TX, USA.

    Google Scholar 

  • Curtis, P. S., Drake, B. G., Leadley, P. W., Arp, W. J. and Whigham, D. F. 1989. Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh. Oecologia 78: 20–26.

    Google Scholar 

  • Curtis, P. S., Baulduman, L. M., Drake, B. G. and Whigham, D. F. 1990. Elevated atmospheric CO2 effects on below-ground processes in C3 and C4 estuarine marsh communities. Ecology 71: 2001–2006.

    Google Scholar 

  • Delmas, R. J., Ascencio, J. & Legrand, M. 1980. Polar ice evidence that atmospheric CO2 20, 000 yr BP was 50% of present. Nature 284: 155–157.

    Google Scholar 

  • Ehleringer, J. R. & Pearcy, R. W. 1983. Variations in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol. 73: 555–559.

    Google Scholar 

  • Ehleringer, J. R., Sage, R. F., Flanagan, L. B. & Pearcy, R. W. 1991. Climate change and the evolution of C4 photosynthesis. Trends in Ecol. & Evol. 6: 95–99.

    Google Scholar 

  • Gifford, R. M., Lambers, H. & Morison, J. I. L. 1985. Respiration of crop species under CO2 enrichment. Physiol. Plant. 63: 351–356.

    Google Scholar 

  • Gould, F. W. 1975. Texas Plants — A Checklist and Ecological Summary. Texas Agric. Exper. Sta. MP-585.

  • Graham, R. W. & Grimm, E. C. 1990. Effects of global climate change on the patterns of terrestrial biological communities. Trends in Ecol. and Evol. 5: 289–292.

    Google Scholar 

  • Grime, J. P. 1979. Plant Strategies and Vegetation Processes. John Wiley & Sons, New York.

    Google Scholar 

  • Grulke, N. E., Reichers, G. H., Oechel, W. C., Hjelm, U. & Jaeger, C. 1990. Carbon balance in tussock tundra under ambient and elevated atmospheric CO2. Oecologia 83: 485–494.

    Google Scholar 

  • Hesketh, J. D. 1963. Limitations to photosynthesis responsible for differences among species. Crop Sci. 3: 493–496.

    Google Scholar 

  • Hilbert, D. W., Prudhomme, T. I. & Oechel, W. C. 1987. Response of tussock tundra to elevated carbon dioxide regimes: analysis of ecosystem CO2 flux through nonlinear modeling. Oecologia 72: 466–472.

    Google Scholar 

  • Idso, S. B. 1989a. Carbon Dioxide and Global Change: Earth in Transition. IBR Press, Tempe, Arizona.

    Google Scholar 

  • Idso, S. B. 1989b. A problem for paleoclimatology? Quaternary Res. 31: 433–434.

    Google Scholar 

  • Idso, S. B., Allen, S. G. & Kimball, B. A. 1990. Growth response of water lily to atmospheric CO2 enrichment. Aquat. Bot. 37: 87–92.

    Google Scholar 

  • Idso, S. B., Kimball, B. A. & Allen, S. G. 1991. CO2 enrichment of sour orange trees: two and a half years into a long-term experiment. Plant, Cell Environ. 14: 351–353.

    Google Scholar 

  • Idso, S. B., Kimball, B. A., Anderson, M. G. & Mauney, J. R. 1987. Effects of atmospheric CO2 enrichment on plant growth: The interactive role of temperature. Agric., Ecosystems Environ. 20: 1–10.

    Google Scholar 

  • Johnson, H. B. & Mayeux, H. S. (in press). A view on species additions and deletions and the balance of nature. J. Range Manage.

  • Kimball, B. A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agron J. 75: 779–788.

    Google Scholar 

  • Kramer, P. J. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience 31: 29–33.

    Google Scholar 

  • Long, S. P. & Hutchin, P. R. 1991. Primary production in grasslands and coniferous forests with climate change: an overview. Ecol. Appl. 1: 139–156.

    Google Scholar 

  • LaMarche, V. C.Jr., Graybill, H. C., Fritts, H. C. & Rose, M. R. 1984. Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225: 1019–1021.

    Google Scholar 

  • Lemon, E. R. 1983. CO2 and Plants. AAAS Selected Symposium. Westview Press, Boulder, CO, USA.

    Google Scholar 

  • Malcolm, W. M. 1966. Biological interactions. Bot. Review 32: 243–254.

    Google Scholar 

  • Mayeux, H. S., Johnson, H. B. & Polley, H. W. 1991. Global change and vegetation dynamics. In: James, F. J., Evans, J. D., Ralphs, M. H. & Child, R. D. (eds), Noxious Range Weeds, pp. 62–74. Westview Press, Boulder, CO, USA.

    Google Scholar 

  • Moore, P. D. 1989. Some ecological implications of paleo-atmospheric variations. J. Geol. Soc., London 146: 183–186.

    Google Scholar 

  • Morison, J. I. L. 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell Environ. 8: 467–474.

    Google Scholar 

  • Neftel, A., Moore, E., Oeschger, H. & Stauffer, B. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315: 45–47.

    Google Scholar 

  • Neustadt, M. I. 1984. Holocene peatland development. In: Velichko, A. A. (ed), Late Quaternary Environments of the Soviet Union, pp. 201–296. Univ. Minnisota Press, Minneapolis, MN, USA.

    Google Scholar 

  • Oechel, W. C. & Strain, B. R. 1985. Native species responses to increased carbon dioxide concentration. In: Strain, B. R. & Cure, J. D. (eds), Direct Effects of Increasing Carbon Dioxide on Vegetation, (DOE/ER-0238), pp. 117–154. U. S. Dept. Energy, Washington, DC, USA.

    Google Scholar 

  • Osmond, C. B., Björkman, O., & Anderson, D. J. 1980. Physiological Processes in Plant Ecology. Springer-Verlag, Berlin.

    Google Scholar 

  • Osmond, C. B., Winter, K. & Ziegler, H. 1982. Functional significance of different pathways of CO2 fixation in photosynthesis. In: Encyclopedia of Plant Physiology, New Series. 12B. Springer-Verlag, Berlin.

    Google Scholar 

  • Overdieck, D. & Reining, F. 1986. Effect of atmospheric CO2 enrichment on perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) competing in managed model-ecosystems I. Phytomass and production. Acta Oecologica 7: 357–366.

    Google Scholar 

  • Overpeck, J. T., Bartlein, P. J. & Webb, T.III. 1991. Potential magnitude of future vegetation change in eastern North America: Comparisons with the past. Science 254: 692–695.

    Google Scholar 

  • Patterson, D. T. & Flint, E. P. 1980. Potential effects of global atmospheric CO2 enrichment on the growth and competitiveness of C3 and C4 weed and crop plants. Weed Sci. 28: 71–75.

    Google Scholar 

  • Patterson, D. T. & Flint, E. P. 1990. Implications of increasing carbon dioxide and climate change for plant communities and competition in natural and managed ecosystems. In: Kimball, B. A. (ed), Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture, pp. 83–110. ASA Spec. Publ. No. 53. Am. Soc. Agron., Madison, WI, USA.

    Google Scholar 

  • Pearcy, R. W. & Bjorkman, O. 1983. Physiological effects. In: Lemon, E. R. (ed), The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide, pp. 65–105. Am. Assoc. Adv. Sci., Westview Press, Boulder, CO, USA.

    Google Scholar 

  • Reichers, G. H. & Strain, B. R. 1988. Growth of blue grama (Bouteloua gracilis) in response to atmospheric CO2 enrichment. Can. J. Bot. 66: 1570–1573.

    Google Scholar 

  • Sage, R. F., Sharkey, T. D. & Seemann, J. R. 1989. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 89: 590–596.

    Google Scholar 

  • Sharkey, T. D. 1988. Estimating the rate of photorespiration in leaves. Physiol. Plant. 73: 147–152.

    Google Scholar 

  • Smith, B. N. 1976. Evolution of C4 photosynthesis in response to changes in carbon and oxygen concentrations in the atmosphere through time. BioSystems 8: 24–32.

    Google Scholar 

  • Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communties. Princeton Univ. Press, Princeton, NJ, USA.

    Google Scholar 

  • Trabalka, J. R., Edmonds, J. A., Reilly, J. M., Gardner, R. H. & Voorhees, L. D. 1985. Human alterations of the global carbon cycle and the projected future. In: Trabalka, J. R. (ed), Atmospheric Carbon Dioxide and the Global Carbon Cycle, pp 247–287. DOE/ER-0239, US Dept. Energy, Washington, DC, USA.

    Google Scholar 

  • WebbIII, T. 1986. Is vegetation in equilibrium with climate? How to interpret late-Quarternary pollen data. Vegetatio 67: 75–91.

    Google Scholar 

  • Wells, P. V. 1983. Late quaternary vegetation of the great plains. Trans. Nebraska Acad. Sci. XI: 83–89.

    Google Scholar 

  • Woodward, F. I. 1987. Climate and Plant Distribution. Cambridge Univ. Press, London.

    Google Scholar 

  • Wray, S. M. & Strain, B. R. 1980. Response of two yield perennials to interactions of CO2 enrichment and drought stress. Am. J. Bot. 73: 1486–1491.

    Google Scholar 

  • Wray, S. M. & Strain, B. R. 1987. Competition in old field perennials under CO2 enrichment. Ecology 68: 1116–1120.

    Google Scholar 

  • Zangerl, A. R. & Bazzaz, F. A. 1984. The response of plants to elevated CO2. Oecologia 62: 412–417.

    Google Scholar 

  • Ziska, L. H., Drake, B. G., and Chamberlain, S. 1990. Long-term photosynthetic response in single leaves of a C3 and C4 salt marsh species grown at elevated atmospheric CO2 in situ. Oecologia 83: 469–473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, H.B., Polley, H.W. & Mayeux, H.S. Increasing CO2 and plant-plant interactions: effects on natural vegetation. Vegetatio 104, 157–170 (1993). https://doi.org/10.1007/BF00048151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048151

Keywords

Navigation