Skip to main content
Log in

The Schur algorithm and its applications

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The Schur algorithm and its time-domain counterpart, the fast Cholseky recursions, are some efficient signal processing algorithms which are well adapted to the study of inverse scattering problems. These algorithms use a layer stripping approach to reconstruct a lossless scattering medium described by symmetric two-component wave equations which model the interaction of right and left propagating waves. In this paper, the Schur and fast Chokesky recursions are presented and are used to study several inverse problems such as the reconstruction of nonuniform lossless transmission lines, the inverse problem for a layered acoustic medium, and the linear least-squares estimation of stationary stochastic processes. The inverse scattering problem for asymmetric two-component wave equations corresponding to lossy media is also examined and solved by using two coupled sets of Schur recursions. This procedure is then applied to the inverse problem for lossy transmission lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schur, I.: ‘Uber Potenzreihen, die in Innern des Einheitskrises Beschränkt Sind’, J. Reine Angew. Math. 147 (1917), 205–232.

    Google Scholar 

  2. Akhiezer, N. I.: The Classical Moment Problem, Hafner, New York, 1965 (Russian original 1961).

    Google Scholar 

  3. Delsarte, P., Genin, Y. and Kamp, Y.: ‘On the Role of the Nevanlinna-Pick Problem in Circuit and System Theory’, Int. J. Circuit Theory Appl. 9 (1981), 177–187.

    Google Scholar 

  4. Dewilde, P.: ‘Stochastic Modeling with Orthogonal Filters’, in I. D.Landau (ed.), Mathematical Tools and Models for Control Systems Analysis and Signal Processing, CNRS Publication, Paris, 1982.

    Google Scholar 

  5. Morf, M.: ‘Fast Algorithms for Multivariable Systems’, PhD Dissertation, Dept. of Elec. Ang., Stanford University, Stanford, CA, Aug. 1974.

  6. Rissanen, J.: ‘Algorithms for Triangular Decomposition of Block Hankel and Toeplitz Matrices with Applications to Factoring Positive Matrix Plynomials’, Math. Comput. 27 (1973), 147–154.

    Google Scholar 

  7. Musicus, B.: ‘Levinson and Fast Cholesky Algorithms for Toeplitz and Almost Toeplitz Matrices’, Technical Report, Research Laboratory of Electronics, MIT, Cambridge, MA, Nov. 1981.

    Google Scholar 

  8. Kailath, T., Levy, B., Ljung, L., and Morf, M.: ‘The Factorization and Representation of Operators in the Algebra Generated by Toeplitz Operators’, SIAM J. Appl. Math. 37 (1979), 467–484.

    Google Scholar 

  9. Robinson, E. A.: ‘Spectral Approach to Geophysical Inversion by Lorentz, Fourier, and Radon Transforms’, Proc. IEEE 70 (1982), 1039–1054.

    Google Scholar 

  10. Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM, Philadephia, 1981.

    Google Scholar 

  11. Zakharov, V. E. and Shabat, P. B.: ‘Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media’, Soviet. Phys. JETP 34 (1972), 62–69.

    Google Scholar 

  12. Markel, J. D. and Gray, A. H.: Linear Prediction of Speech, Springer-Verlag, New York, 1978.

    Google Scholar 

  13. Deprettere, E. and Dewilde, P.: ‘Orthogonal Cascade Realization of Real Multiport Digital Filters’, Int. J. Circuit Theory Appl. 8 (1980), 245–272.

    Google Scholar 

  14. Makhoul, J.: ‘Stable and Efficient Lattice Methods for Linear Prediction’, IEEE Trans. Acoust., Speech, Signal Proc. ASSP-25 (1977), 256–261.

    Google Scholar 

  15. Dewilde, P., Vieira, A. C., and Kailath, T.: ‘On a Generalized Szëgo-Levinson Realization Algorithm for Optimal Linear Prodictors Based on a Network Synthesis Approach’, IEEE Trans. Circuits Systems CAS-25 (1978), 663–675.

    Google Scholar 

  16. Dewilde, P. and Dym, H.: ‘Schur Recursions, Error Formulas, and Convergence of Rational Estimators for Stationary Stochastic Sequences’, IEEE Trans. Inform. Theory IT-29 (1981), 446–461.

    Google Scholar 

  17. Redheffer, R.: ‘On the Relation of Transmission-Line Theory to Scattering and Transfer’, J. Math. Phys. 41 (1962), 1–41.

    Google Scholar 

  18. Faddeev, L. D.: ‘Properties of the S-Matrix of the One-Dimensional Schrödinger Equation’, Amer. Math. Soc. Transl., Series 2, 65 (1967), 139–166.

    Google Scholar 

  19. Chadan, K. and Sabatier, P. C., Inverse Problems in Quantum Scattering Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1977.

    Google Scholar 

  20. Bruckstein, A. M., Levy, B. C. and Kailath, T.: ‘Differential Methods in Inverse Scattering’, Technical Report LIDS-P-1313, Laboratory for Information and Decision Systems, MIT, Cambridge, MA., August 1983.

    Google Scholar 

  21. Bube, K. P. and Burridge, R.: ‘The One-Dimensional Problem of Reflection Seismology’, SIAM Rev. 25 (1983), 497–559.

    Google Scholar 

  22. Bellman, R. and Wing, G. M.: An Introduction to Invariant Imbedding, Wiley, New York, 1975.

    Google Scholar 

  23. Gjevick, B., Nilsen, A., and Hoyen, J.: ‘An Attempt at the Inversion of Reflection Data’, Geophys. Prospecting 24 (1976), 492–505.

    Google Scholar 

  24. Santosa, F. and Schwetlick, H.: ‘The Inversion of Acoustical Impedance Profile by Methods of Characteristics’, Wave Motion 4 (1982), 99–110.

    Google Scholar 

  25. Sondhi, M. M. and Resnick, J. R.: ‘The Inverse Problem for the Vocal Tract: Numerical Methods, Acoustical Experiments and Speech Synthesis’, J. Acoust. Soc. Amer. 73 (1983), 985–1002.

    Google Scholar 

  26. Symes, W. W.: ‘Stable Solution of the Inverse Reflection Problem for a Smoothly Stratified Elastic Medium’, SIAM J. Math. Anal. 12 (1981), 421–453.

    Google Scholar 

  27. Lamb, G. L.Jr.: Elements of Soliton Theory, Wiley, New York, 1980.

    Google Scholar 

  28. Kay, I. and Moses, H. E., Inverse Scattering Papers: 1955–1963, Math. Sci. Press, Brookline, Mass., 1982.

    Google Scholar 

  29. Deift, P. and Trubowitz, E.: ‘Inverse Scattering on the Line’, Comm. Pure Appl. Math. 32 (1979), 121–251.

    Google Scholar 

  30. Gopinath, B. and Sondhi, M. M.: ‘Inversion of the Telegraph Equation and the Synthesis of Nonumniform Lines’, Proc. IEEE 59 (1971), 383–392.

    Google Scholar 

  31. Gopinath, B. and Sondhi, M. M.: ‘Determination of the Shape of the Human Vocal Tract from Acoustical Measurements’, Bell Syst. Tech. J. 49 (1970), 1195–1214.

    Google Scholar 

  32. Kraus, J. and Carver, K.: Electromagnetics, McGraw-Hill, New York, 1973.

    Google Scholar 

  33. Ware, J. A. and Aki, K.: ‘Continuous and Discrete Inverse Scattering Problems in a Stratified Elastic Medium I: Plane Waves at Normal Incidence’, J. Acoust. Soc. Amer. 45 (1969), 911–921.

    Google Scholar 

  34. Berryman, J. G. and Greene, R. R.: ‘Discrete Inverse Methods for Elastic Waves in Layered Media’, Geophysics 45 (1980), 213–233.

    Google Scholar 

  35. Newton, R. G.: ‘Inversion of Reflection Data for Layered Media: A Review of Exact Methods’, Geophys. J. Royal Astron. Soc. 65 (1981), 191–215.

    Google Scholar 

  36. Carroll, R. and Santosa, F.: ‘Scattering Techniques for a One-Dimensional Inverse Problem in Geophysics’, Math. Meth. Appl. Sci. 3 (1981), 145–171.

    Google Scholar 

  37. Coen, S.: ‘Density and Compressibility Profiles of a Layered Acoustic Medium from Precritical Incidence Data’, Geophysics 46 (1981), 1244–1246.

    Google Scholar 

  38. Howard, M. S.: ‘Inverse Scattering for a Layered Acoustic Medium Using the First-Order Equations of Motion’, Geophysics 48 (1983), 163–170.

    Google Scholar 

  39. Yagle, A. E. and Levy, B. C.: ‘Application of the Schur Algorithm to the Inverse Problem for a Layered Acoustic Medium’, J. Acoust. Soc. Amer. 76 (1984), 301–308.

    Google Scholar 

  40. Dewilde, P., Fokkema, J. T., and Widya, I.: ‘Inverse Scattering and Linear Prediction, The Time Continuous Case’, in M.Hazewinkel and J.Willems (eds.), Stochastic Systems: The Mathematics of Filtering and Identification and Applications, D. Reidel, Dordrecht, 1981, 351–382.

    Google Scholar 

  41. Kailath, T., Vieira, A., and Morf, M.: ‘Inverses of Toeplitz Operators, Innovations, and Orthogonal Polynomials’, SIAM Rev. 20 (1978), 106–119.

    Google Scholar 

  42. Rao, S. K. and Kailath, T.: ‘Orthogonal Digital Filters for VLSI Implementation’, IEEE Trans. Circuits Synt. CAS- 31 (1984). 933–945.

    Google Scholar 

  43. Satorius, E. H. and Alexander, S. T.: ‘Channel Equalization Using Adaptive Lattice Algorithms’, IEEE Trans. Commun. COM-27 (1979), 899–905.

    Google Scholar 

  44. Wiggins, R. and Brantingham, L.: ‘Three-Chip System Synthesizes Human Speech’, Electronics (August 31, 1978) 109–116.

  45. Friedlander, B.: ‘Lattice Methods for Spectral Estimation’, Proc. IEEE 70 (1982), 990–1017.

    Google Scholar 

  46. Jaulent, M.: ‘The Inverse Scattering Problem for LCRG Transmission Lines’, J. Math. Phys. 23 (1982), 2286–2290.

    Google Scholar 

  47. Bultheel, A.: ‘Towards an Error Analysis of Fast Toeplitz Factorization’, Tech. Report No. TW-44, Applied Mathematics and Programming Division, Katholieke Universiteit Leuven, Belgium, May 1979.

    Google Scholar 

  48. Yagle, A. E. and Levy, B. C.: ‘A Layer-Stripping Solution of the Inverse Problem for a One-Dimensional Elastic Medium’, to appear in Geophysics (1985).

  49. Clarke, T. J.: ‘Full Reconstruction of a Layered Elastic Medium from P-SV Slant Stack Data’, Geophys. J. Royal Astron. Soc. 78 (1984), 775–793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of this author was supported by the Exxon Education Foundation

The work of this author was supported by the Air Force Office of Scientific Research under Grant AFOSR-82-0135A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagle, A.E., Levy, B.C. The Schur algorithm and its applications. Acta Appl Math 3, 255–284 (1985). https://doi.org/10.1007/BF00047331

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047331

AMS (MOS) subject classifications (1980)

Key words

Navigation