Skip to main content
Log in

Generalized solutions to partial differential equations of evolution type

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

This paper deals with a new solution concept for partial differential equations in algebras of generalized functions. Introducing regularized derivatives for generalized functions, we show that the Cauchy problem is wellposed backward and forward in time for every system of linear partial differential equations of evolution type in this sense. We obtain existence and uniqueness of generalized solutions in situations where there is no distributional solution or where even smooth solutions are nonunique. In the case of symmetric hyperbolic systems, the generalized solution has the classical weak solution as ‘macroscopic aspect’. Two extensions to nonlinear systems are given: global solutions to quasilinear evolution equations with bounded nonlinearities and local solutions to quasilinear symmetric hyperbolic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamczewski, M., Colombeau, J. F., and Le Roux, A. Y.: Convergence of numerical schemes involving powers of the Dirac delta function, J. Math. Anal. Appl. 145 (1990), 172–185.

    Google Scholar 

  2. Barka, Y. A., Colombeau, J. F., and Perrot, B.: A numerical modelling of the fluid/fluid acoustic dioptra, J. Acoustique 2 (1989), 333–346.

    Google Scholar 

  3. Biagioni, H. A.: A Nonlinear Theory of Generalized Functions, Lecture Notes in Math. 1421, Springer, Berlin, 1990.

    Google Scholar 

  4. Biagioni, H. A. and Colombeau, J. F.: Whitney's extension theorem for generalized functions, J. Math. Anal. Appl. 114 (1986), 574–583.

    Google Scholar 

  5. Biagioni, H. A. and Oberguggenberger, M.: Generalized solutions to Burger's equations, J. Differential Equations 97(2) (1992), 263–287.

    Google Scholar 

  6. Brenber, Ph., Thomée, V., and Wahlbin, L. B.: Besov Spaces and Applications to Difference Methods for Initial Value Problems, Lecture Notes in Math. 434, Springer, Berlin, 1975.

    Google Scholar 

  7. Cauret, J. J., Colombeau, J. F., and Le Roux, A. Y.: Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations, J. Math. Anal. Appl. 139 (1989), 552–573.

    Google Scholar 

  8. Chazarain, J. and Piriou, A.: Introduction to the Theory of Linear Partial Differential Equations, North-Holland, Amsterdam, 1982.

    Google Scholar 

  9. Colombeau, J. F.: Differentiation et bornologie, Thèse, Université de Bordeaux, 1973.

  10. Colombeau, J. F.: Sur les équations différentielles dans les espaces vectoriels topologiques ou bornologiques, Rev. Roumaine Math. Pures Appl. 20 (1975), 19–32.

    Google Scholar 

  11. Colombeau, J. F.: New Generalized Functions and Multiplication of Distributions, North-Holland, Amsterdam, 1985.

    Google Scholar 

  12. Colombeau, J. F.: Elementary Introduction to New Generalized Functions, North-Holland, Amsterdam, 1985.

    Google Scholar 

  13. Colombeau, J. F.: New general existence results for partial differential equations. Université de Bordeaux, unpublished paper, 1985. A mathematical analysis adapted to the multiplication of distributions. Université de Bordeaux, unpublished paper, 1985.

  14. Colombeau, J. F.: Multiplication of Distributions: A Tool in Mathematics, Numerical Engineering and Theoretical Physics, Lecture Notes in Math. 1532, Springer-Verlag, New York, 1992.

    Google Scholar 

  15. Colombeau, J. F.: Multiplication of distributions, Bull. Amer. Math. Soc. 23 (1990), 251–268.

    Google Scholar 

  16. Colombeau, J. F.: Multiplication de distributions et acoustique, J. Acoustique 1 (1989), 9–14.

    Google Scholar 

  17. Colombeau, J. F.: The elastoplastic shock problem as an example of the resolution of ambiguities in the multiplication of distributions, J. Math. Phys. 30 (1989), 2273–2279.

    Google Scholar 

  18. Colombeau, J. F. and Heibig, A.: Nonconservative products in bounded variation functions and solutions of systems in nonconservative form, SIAM J. Math. Anal. 23(4) (1992), 941–949.

    Google Scholar 

  19. Colombeau, J. F. and Heibig, A.: Generalized solutions to Cauchy problems, Monatsh. Math. 117 (1994), 33–49.

    Google Scholar 

  20. Colombeau, J. F., Laurens, J., and Perrot, B.: Une méthode numérique de résolution des équations de l'acoustique dans un milieu à caractéristique C par morceaux, Colloque de Physique, Supplément au J. Phys. 2(51) (1990), 1227–1230.

    Google Scholar 

  21. Colombeau, J. F. and Le Roux, A. Y.: Numerical techniques in elastodynamics, in C. Carasso, P. A. Raviart and D. Serre (eds), Nonlinear Hyperbolic Problems, Lecture Notes in Math. 1270, Springer, Berlin, 1987, pp. 103–114.

    Google Scholar 

  22. Colombeau, J. F. and Le Roux, A. Y.: Multiplication of distributions in elasticity and hydrodynamics, J. Math. Phys. 29 (1988), 315–319.

    Google Scholar 

  23. Colombeau, J. F., Le Roux, A. Y., Noussair, A., and Perrot, B.: Microscopic profiles of shock waves and ambiguities in multiplications of distributions, SIAM J. Numer. Anal. 26 (1989), 871–883.

    Google Scholar 

  24. Colombeau, J. F. and Oberguggenberger, M.: On a hyperbolic system with a compatible quadratic term: generalized solutions, delta waves, and multiplication of distributions, Comm. Partial Differential Equations 15 (1990), 905–938.

    Google Scholar 

  25. Colombeau, J. F. and Oberguggenberger, M.: Approximate generalized solutions and measure valued solutions to conservation laws, ENS-Lyon, Preprint, 1990.

  26. DalMaso, G., Le Floch, Ph., and Murat, F.: Definition of weak stability of nonconservative products, Ecole Polytechnique Paris, Preprint, 1989.

  27. Dieudonné, J.: Foundations of Modem Analysis, Academic Press, New York, 1969.

    Google Scholar 

  28. Di Perna, R. J.: Measure valued solutions to conservation laws, Arch. Rat. Mech. Anal. 88 (1985), 223–270.

    Google Scholar 

  29. Di Perna, R. J. and Majda, A.: Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), 667–689.

    Google Scholar 

  30. Egorov, Yu. V.: On a new theory of generalized functions, Vestnik Moskov. Univ. Ser. 1, Mat. Mekh. 4 (1989), 96–99.

    Google Scholar 

  31. Egorov, Yu. V.: On the theory of generalized functions, Uspekhi Mat. Nauk 45(5) (1990), 1–49. English translation: Russian Math. Surveys 45(5) (1990), 1–49.

    Google Scholar 

  32. Friedrichs, K.: The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132–151.

    Google Scholar 

  33. Heibig, A. and Moussaoui, M. Generalized and classical solutions of nonlinear parabolic equations, J. Nonlinear Anal. TMA, in press.

  34. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1967.

    Google Scholar 

  35. Hörmander, L.: Nonuniqueness for the Cauchy problem, in J. Chazarain (ed.), Fourier Integral Operators and Partial Differential Equations, Lecture Notes in Math. 459, Springer, Berlin, 1975, pp. 36–72.

    Google Scholar 

  36. Hörmander, L.: Linear Partial Differential Operators, Springer, Berlin, 1964.

    Google Scholar 

  37. Kato, T.: The Cauchy problem for quasilinear symmetric hyperbolic systems, Arch. Rat. Mech. Anal. 58 (1975), 181–205.

    Google Scholar 

  38. Lafon, F.: Generalized solution of a one dimensional semilinear hyperbolic system with discontinuous coefficients, preprint, Bordeaux, 1988.

  39. Lafon, F. and Oberguggenberger, M.: Generalized solutions to symmetric hyperbolic systems with discontinuous coefficients: the multidimensional case, J. Math. Anal. Appl. 160 (1991), 93–106.

    Google Scholar 

  40. Langlais, M.: Generalized functions solutions of monotone and semilinear parabolic equations, Monatsh. Math. 110 (1990), 117–136.

    Google Scholar 

  41. Le Floch, Ph.: Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form, Comm. Partial Differential Equations 13 (1988), 669–727.

    Google Scholar 

  42. Levy, H.: An example of a smooth linear partial differential equation without solution, Ann. Math. 66 (1957), 155–158.

    Google Scholar 

  43. Mizohata, S.: On the Cauchy Problem, Science Press, Beijing, Academic Press, New York, 1985.

    Google Scholar 

  44. Murio, D. A.: Automatic numerical differentiation by discrete mollification, Comput. Math. Appl. 13 (1987), 381–386.

    Google Scholar 

  45. Oberguggenberger, M.: Generalized solutions to semilinear hyperbolic systems, Monatsh. Math. 103 (1987), 133–144.

    Google Scholar 

  46. Oberguggenberger, M.: Hyperbolic systems with discontinuous coefficients: Generalized solutions and a transmission problem in acoustics, J. Math. Anal. Appl. 142 (1989), 452–467.

    Google Scholar 

  47. Oberguggenberger, M.: Semilinear wave equations with rough initial data: Generalized solutions, in P. Antosik and A. Kaminski (eds), Generalized Functions and Convergence, World Scientific, Singapore, 1990, pp. 181–203.

    Google Scholar 

  48. Oberguggenberger, M.: The Carleman system with positive measures as initial data, Transport Theory Stat. Phys. 20 (1991), 177–197.

    Google Scholar 

  49. Oberguggenberger, M.: Case study of a nonlinear, nonconservative, non-strictly hyperbolic system, Nonlinear Anal. TMA 19(1) (1992), 53–79.

    Google Scholar 

  50. Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Research Notes in Math. 259, Longman, Harlow, 1992.

    Google Scholar 

  51. Rosinger, E. E.: Nonlinear Equivalence Reduction of PDEs to ODEs and Fast Convergent Numerical Methods, Research Notes in Math. 77, Pitman, Boston, 1982.

    Google Scholar 

  52. Rosinger, E. E.: Nonlinear Partial Differential Equations — Sequential and Weak Solutions, North-Holland, Amsterdam, 1980.

    Google Scholar 

  53. Rosinger, E. E.: Generalized Solutions of Nonlinear Partial Differential Equations, North-Holland, Amsterdam, 1987.

    Google Scholar 

  54. Rosinger, E. E.: Nonlinear Partial Differential Equations: An Algebraic View of Generalized Functions, North-Holland, Amsterdam, 1990.

    Google Scholar 

  55. Taylor, M. E.: Pseudodifferential Operators, Princeton University Press, Princeton, 1981.

    Google Scholar 

  56. Zuily, C.: Uniqueness and Non-Uniqueness in the Cauchy Problem, Birkhäuser, Boston, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombeau, J.F., Heibig, A. & Oberguggenberger, M. Generalized solutions to partial differential equations of evolution type. Acta Appl Math 45, 115–142 (1996). https://doi.org/10.1007/BF00047123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047123

Mathematics Subject Classifications (1991)

Key words

Navigation