Skip to main content
Log in

Application of a new statistical function for fracture toughness to failures at microracks in brittle materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A new statistical distribution function for fracture toughness has been derived on the basis of the self-similar nature of the mechanical behaviour of crack-tip regions. It has been used to describe statistically variable fracture-toughness data well and to give a good prediction of the effect of the crack front length, that is of the specimen size. The present paper develops on this basis a statistical criterion for failure in linearly elastic materials containing distributions of many microcracks. Data from a number of materials tested in several different laboratories are presented, as are the results of statistical tests showing the quality of the fits obtained using the new function. Some bimodal data is considered.

Résumé

On a établi une nouvelle fonction de distribution statistique pour la ténacité à la rupture, en se basant sur la nature homothétique du comportement mécanique des régions sises aux extrémités de fissures.

Cette fonction est utilisée pour présenter des données de ténacité à la rupture statistiquement variables, et pour fournir une prédiction satisfaisante des effet de la longueur du front de fissuration ou de la taille de l'éprouvette.

Sur cette base, on développe dans l'étude un critère statistique de rupture dans des matériaux linéaires élastiques comportant des distributions de nombreuses microfissures.

Les données relatives à plusieurs matériaux essayés dans divers laboratoires sont fournies, et les résultats d'essais statistiques présentés montrent la bonne concordance à laquelle conduit l'usage de la nouvelle finction. On considère également quelques données à caractère bimodal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Neville, Proceedings of the Royal Society A410 (1987) 421.

    Google Scholar 

  2. W. Weibull, Ingeniörsvetenskapsakademiens Handlingar Nr 151, Generalstabens litografiska anstalts förlag. Stockholm (1939).

  3. D.J. Neville, Engineering Fracture Mechanics 27 (1987) 143.

    Google Scholar 

  4. K.K. Phani and A.K. Maitra, Materials Science and Engineering 93 (1987) L5.

    Google Scholar 

  5. M.J. Kerper and T.G. Scuderi, American Ceramic Society Bulletin 43 (1964) 622.

    Google Scholar 

  6. J.B. Kennedy and A.M. Neville, Basic Statistical Methods for Engineers and Scientists, 3rd ed., Harper and Row (1986) Chap. 18.

  7. D. Kalish, B.K. Tariyal, and R.O. Pickwick, American Ceramic Society Bulletin 56 (1977) 491.

    Google Scholar 

  8. I.S. Gradshteyn and I.M. Ryzhik, 3.241.5 in Table of Integrals, Series and Products, 4th, Academic Press (1965) 293.

  9. A.S.T.M., in Proceedings of the American Society for Testing Materials 33 (1933) 448.

  10. A.C.I. Committee 214, Journal of the American Concrete Institute 52 (1955) 241.

    Google Scholar 

  11. D.L. Ivey, Splitting tensile tests on structural lightweight aggregate concrete, Texas Transportation Institute, College Station, Texas (1965).

    Google Scholar 

  12. J.L. Ratigan, Ph.D. thesis, Lawrence Berkeley Laboratory, University of California at Berkeley (1981).

  13. J.M. Newton, private communication (1986).

  14. J.J. Petrovic, J.L. Milewski, D.L. Rohr, and F.D. Gac, Journal of Materials Science 20 (1985) 1167.

    Google Scholar 

  15. J.J. Petrovic and M.G. Stout, Journal of the American Ceramic Society 64 (1981) 656.

    Google Scholar 

  16. D.J. Neville, International Journal of Fracture 36 (1988) 233.

    Google Scholar 

  17. G.K. Schmitz and A.G. Metcalfe, Exploration and evaluation of new glasses in fibre form, U.S. Naval Research Laboratory Report (1963).

  18. R. Olshansky and R.D. Maurer, Journal of Applied Physics 47 (1976) 4497.

    Google Scholar 

  19. W.D. Scott and A. Gaddipati, in Fracture Mechanics of Ceramics, R.C. Brandt, D.P.H. Hasselman and F.F. Lange (eds.), 2, Plenum Press (1978) 125.

  20. W.E. Snowdon, in Fracture Mechanics of Ceramics, 2, Plenum Press (1978) 143.

  21. D.J. Neville, International Journal of Fracture 34 (1987) 309.

    Google Scholar 

  22. D.J. Neville and J.F. Knott, Journal of the Mechanics and Physics of Solids (1986) 278.

  23. J.A. Kies, The strength of glass, NRL report 5093, Naval Research Laboratory, Washington D.C. (1958).

    Google Scholar 

  24. J.J. Petrovic and M.G. Mendiratta, Journal of the American Ceramic Society 59 (1976) 163.

    Google Scholar 

  25. N.McN. Alford, J.D. Birchall and K. Kendall, Nature 330 (1987) 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neville, D.J. Application of a new statistical function for fracture toughness to failures at microracks in brittle materials. Int J Fract 44, 79–96 (1990). https://doi.org/10.1007/BF00047061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047061

Keywords

Navigation