Skip to main content
Log in

On the evolution of central nervous systems: Implications from polyclad turbellarian neurobiology

  • Nervous System and Sensory Structures
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The nervous system of the polyclad turbellarian Notoplana acticola consists of a series of nerve plexuses and a central ganglion, the brain. The brain contains a variety of cell types including multipolar heteropolar and bipolar neurons. These cell types are rare in other invertebrate ganglia. Individual neurons also contain a variety of different ion channels. both spiking and nonspiking neurons are found. Some neurons are multimodal interneurons. Habituation appears to be a postsynaptic phenomenon. Sensitization and long-term potentiation have not been demonstrated. Polyclads appear to represent a stage in the evolution of centralized nervous systems where much of the neuronal machinery underlying behavior occurs in the peripheral nervous system and the brain's main functions are the coordination and sequencing of peripherally placed reflexes. Even at this stage, however, the brain already contains cells that seem as advanced as those found in higher organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardo, K., G. C. Stone & H. Koopowitz, 1977. Primitive nervous systems: habituatio in decerebrate flatworms. J. Neurobiol. 8: 141–150.

    Google Scholar 

  • Bullock, T. H. & G. A. Horridge, 1965. Structure and function in the nervous systems of invertebrates. 1. Freeman, San Francisco, 798 pp.

    Google Scholar 

  • Carew, T. J., 1984. An introduction to cellular approaches used in the analysis of habituation and sensitization in Aplysia. In H. V. S. Peeke & L. Petrinovich (eds), Habituation, Sensitization and Behavior. Academic Press, N.Y.: 205–249.

    Google Scholar 

  • Coss, R. G. & A. Globus, 1978. Spine stems on tectal interneurons in jewel fish are shortened by social stimulation. Science 200: 787–790.

    Google Scholar 

  • Faisst, J., L. Keenan & H. Koopowitz, 1980. Neuronal repair and avoidance behavior in the flatworm, Notoplana acticola. J. Neurobiol. 11: 483–496.

    Google Scholar 

  • Gruber, S. A. & D. W. Ewer, 1962. Observations on the myoneural physiology of the polyclad Planocera gilchristi. J. exp. Biol. 39: 459–477.

    Google Scholar 

  • Hadenfeldt, D., 1929. Das Nervensystem von Stylochoplana maculata und Notoplana atomata. Z. wiss. Zool. 133: 586–638.

    Google Scholar 

  • Kandel, E. & J. Schwartz, 1982. Molecular biology of learning: modulation of transmitter release. Science 218: 433–443.

    Google Scholar 

  • Keenan, L. & H. Koopowitz, 1981. Tetrodotoxin-sensitive potentials from the brain of the polyclad flatworm, Notoplana acticola. J. exp. Zool. 215: 209–213.

    Google Scholar 

  • Keenan, C. L. & H. Koopowitz, 1982. Postsynaptic habituation in identified flatworm neurones. Soc. Neurosci. Abst. 8: 161.

    Google Scholar 

  • Keenan, C. L. & H. Koopowitz, 1983. Postsynaptic-cell membrane events accompanying habituation. Soc. Neurosci. Abst. 9: 733.

    Google Scholar 

  • Keenan, C. L. and H. Koopowitz, 1984. Ionic bases of action potentials in identified flatworm neurones. J. comp. Physiol. A. 155: 197–208.

    Google Scholar 

  • Keenan, L., Coss, R. G. & H. Koopowitz, 1981. Cytoarchitecture of primitive brains: Golgi studies on flatworms. J. comp. Neurol. 195: 697–716.

    Google Scholar 

  • Koopowitz, H., 1970. Feeding behavior and the role of the brain in the polyclad flatworm, Planocera gilchristi. Anim. Behav. 18: 31–35.

    Google Scholar 

  • Koopowitz, H., 1974. Some aspects of the physiology and organization of the nerve plexus in polyclad flatworms. In N. W. Riser & M. P. Morse (eds), Biology of the Turbellaria. McGraw-Hill, N.Y.: 198–212.

    Google Scholar 

  • Koopowitz, H., 1982. Free-living Platyhelminthes. In G. A. B. Shelton (ed.), Electrical Conduction and Behaviour in ‘Simple’ Invertebrates. Oxford University Press, Oxford: 359–392.

    Google Scholar 

  • Koopowitz, H. & L. Keenan, 1982. The primitive brains of the Platyhelminthes. Trends Neurosci. 5: 77–79.

    Google Scholar 

  • Loeb, J., 1907. Comparative physiology of the brain and comparative psychology. G. P. Putman's Sons, N.Y.: 72–83.

    Google Scholar 

  • Lynch, G. & M. Baudry, 1984. The biochemistry of memory: a new and specific hypothesis. Science 224: 1057–1063.

    Google Scholar 

  • Pearson, K. G., 1976. Nerve cells without action potentials. In J. C. Fentress (ed.), Simpler networks and behavior. Sinauer Assoc. Inc., Sunderland: 99–110.

    Google Scholar 

  • Reuter, M., 1981. The nervous system of Microstomum lineare (Turbellaria, Macrostomida). II. The ultrastructure of synapses and neurosecretory release sites. Cell Tissue Res. 218: 375–387.

    Google Scholar 

  • Reuter, M. & P. Lindroos, 1979a. The ultrastructure of the nervous system of Gyratrix hermaphroditus (Turbellaria, Rhabdocoela). I. The brain. Acta zool. 60: 139–152.

    Google Scholar 

  • Reuter, M. & P. Lindroos, 1979b. The ultrastructure of the nervous system of Gyratrix hermaphroditus (Turbellaria, Rhabdocoela). II. The peripheral nervous system and the synapses. Acta zool. 60: 153–161.

    Google Scholar 

  • Reuter, M., M. Wikgren & I. Palmberg, 1980. The nervous system of Microstomum lineare (Turbellaria, Macrostomida). Cell Tissue Res. 211: 31–40.

    Google Scholar 

  • Rieger, R. M., 1981. Morphology of the Turbellaria at the ultrastructural level. In E. R. Schockaert & I. R. Ball (eds), The Biology of the Turbellaria. Dr. W. Junk, The Hague: 213–229.

    Google Scholar 

  • Solon, M. H. & H. Koopowitz, 1982. Multimodal interneurons in the polyclad flatworm, Alloeoplana californica. J. comp. Physiol. 145: 171–178.

    Google Scholar 

  • Spencer, A. N. & R. A. Satterlie, 1980. Electrical and dye-coupling in an identified group of neurons in a coelenterate. J. Neurobiol. 11: 13–19.

    Google Scholar 

  • Spitzer, N. C., 1984. What do Rohon-Beard cells do? Trends Neurosci. 7: 224–225.

    Google Scholar 

  • Vanegas, H., M. Laufer & J. Amat, 1974. The optic tectum of a perciform Teleost I. General configuration and cytoarchitecture. J. comp. Neurol. 154: 43–60.

    Google Scholar 

  • Zucker, R., 1972. Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation. J. Neurophys. 35: 621–637.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koopowitz, H. On the evolution of central nervous systems: Implications from polyclad turbellarian neurobiology. Hydrobiologia 132, 79–87 (1986). https://doi.org/10.1007/BF00046232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046232

Keywords

Navigation