Skip to main content
Log in

Microcrack-dependent fracture of damaged rock

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper is concerned with theoretical and experimental estimations of fracture-load degradation due to an increase of damage within a rock. The physical interpretation of this increase will involve a change in length of the process zone and a reduction in modulus. A linear cohesive-zone model of the type introduced by Dugdale and Barenblatt is formulated for large-scale yielding in a geometric sense to demonstrate the effect of microcracking on the critical load of a stationary crack. Experiments with a limestone in the chevron-notched, round beam geometry are conducted at elevated temperatures up to 150°C to evaluate the fracture load as a function of damage. When a material such as rock is heated slowly and uniformly, intergranular thermal stresses develop independent from a temperature gradient because of the local nonhomogeneity or anisotropy of the matrix. With the assumption of brittle behavior, thermal microcracking is shown to contribute to the degradation of the fracture load, as measured by the toughness, mainly through a reduction in modulus. Preliminary results indicate, however, that the energy dissipated in fracturing the damaged rock actually increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Walsh, Journal of Geophysical Research 70 (1965) 381–389.

    Google Scholar 

  2. T.T. Wu, International Journal of Solids and Structures 2 (1966) 1–8.

    Google Scholar 

  3. H. Spetzler, E. Schreiber and R.J. O'Connell, Journal of Geophysical Research 72 (1972) 4938–4944.

    Google Scholar 

  4. B. Budiansky and R.J. O'Connell, International Journal of Solids and Structures 12 (1976) 81–97.

    Google Scholar 

  5. F.S. Henyey and N. Pomphrey, Geophysical Research Letters 9 (1982) 903–906.

    Google Scholar 

  6. R.W. Zimmerman, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 21 (1984) 339–343.

    Google Scholar 

  7. Y. Fu and A.G. Evans, Acta Metallurgica 33 (1985) 1515–1523.

    Google Scholar 

  8. R.M. McMeeking and A.G. Evans, Journal of the American Ceramic Society 65 (1982) 242–251.

    Google Scholar 

  9. A.G. Evans and Y. Fu, Acta Metallurgica 33 (1985) 1525–1531.

    Google Scholar 

  10. J.W. Hutchinson, Acta Metallurgica 35 (1987) 1605–1619.

    Google Scholar 

  11. M.G. Jenkins, A.S. Kobayashi, K.W. White and R.C. Bradt, Journal of the American Ceramic Society 70 (1987) 393–395.

    Google Scholar 

  12. M. Ortiz, Journal of Applied Mechanics 54 (1987) 54–58.

    Google Scholar 

  13. M. Ortiz, International Journal of Solids and Structures 24 (1988) 231–250.

    Google Scholar 

  14. A. Chudnovsky and M. Kachanov, International Journal of Engineering Science 21 (1983) 1009–1018.

    Google Scholar 

  15. M. Kachanov and E. Montagut, Engineering Fracture Mechanics 25 (1986) 625–636.

    Google Scholar 

  16. M. Hori and S. Nemat-Nasser, Journal of the Mechanics and Physics of Solids 35 (1987) 601–629.

    Google Scholar 

  17. R. Ballarini and M. Denda, International Journal of Fracture 37 (1988) 61–71.

    Google Scholar 

  18. A.G. Evans, Scripta Metallurgica 10 (1976) 93–97.

    Google Scholar 

  19. R.A. Schmidt, Proceedings of the 21st U.S. Symposium on Rock Mechanics, Rolla, Missouri (1980) 581–590.

  20. D.S. Dugdale, Journal of the Mechanics and Physics of Solids 8 (1960) 100–104.

    Google Scholar 

  21. G.I. Barenblatt, Advances in Applied Mechanics 7 (1962) 55–129.

    Google Scholar 

  22. C.C. Wu, S.W. Freiman, R.W. Rice and J.J. Mecholsky, Journal of Materials Science 13 (1978) 2659–2670.

    Google Scholar 

  23. R.W. Rice, S.W. Freiman and P.F. Becher, Journal of the American Ceramic Society 64 (1981) 345–350.

    Google Scholar 

  24. P.L. Swanson, Journal of Geophysical Research 92 (1987) 8015–8036.

    Google Scholar 

  25. J.F. Labuz, S.P. Shah and C.H. Dowding, Journal of Engineering Mechanics 115 (1989) 1935–1949.

    Google Scholar 

  26. J.F. Labuz, S.P. Shah and C.H. Dowding, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 22 (1985) 85–98.

    Google Scholar 

  27. J. Janson, Engineering Fracture Mechanics 9 (1977) 891–899.

    Google Scholar 

  28. F. Ouchterlony, Fracture Mechanics Methods for Ceramics, Rocks, and Concrete, ASTM STP 745, S.W. Freiman and E.R. Fuller (eds.), (1981) 237–256.

  29. A.J. Bush, Experimental Mechanics 16 (1976) 249–257.

    Google Scholar 

  30. L.M. Barker, Engineering Fracture Mechanics 9 (1977) 361–369.

    Google Scholar 

  31. F. Ouchterlony, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 25 (1988) 71–96.

    Google Scholar 

  32. L.M. Barker, International Journal of Fracture 15 (1979) 515–536.

    Google Scholar 

  33. F.E. Buresch, Fracture Mechanics of Ceramics 4, R.C. Bradt, D.P.H. Hasselman and F.F. Lange (eds.), Plenum Press, New York (1978) 835–847.

    Google Scholar 

  34. L.M. Barker, K Ic Measurements Using Short Rod Specimens — The Elastic-Plastic Case. Terra Tek Report 77-91R, Salt Lake City, Utah (1977).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labuz, J.F., Chen, C.N. & Berger, D.J. Microcrack-dependent fracture of damaged rock. Int J Fract 51, 231–240 (1991). https://doi.org/10.1007/BF00045809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045809

Keywords

Navigation