Skip to main content
Log in

Background processes at the population level during succession in grasslands on sand

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Two population characteristics, reproductive allocation (RA) and the intensity of photosynthesis, were investigated in the successional stages of the sandy grassland communities of the Great Hungarian Plain. Most of the species studied changed their allocational response as succession advanced. Compound path schemes, as casual models, were constructed and analysed for describing intra-individual effects (influence of assimilating organs and root mass of the plant sampled) as well as the phytosociological effects on RA. In pioneer stages, the high values of path coefficients show that the effect of assimilating organs is responsible for the variability of RA. It is also shown that annuals and perennials exhibit different behaviour as to the regulation of RA. It seems that-in terms of path analysis-the reproduction of annuals is influenced by internal factors only. In case of perennials, an external (namely phytosociological) regulation was also observed. It is suggested that successional stages play a role in regulating the photosynthetic intensity of both the dominant species and the whole plant assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RA =:

Reproductive Allocation

References

  • Abrahamson W. G. 1979. Patterns of resource allocation in wild-flower populations of fields and woods. Amer. J. Bot. 66: 71–79.

    Google Scholar 

  • Abrahamson W. G. & Gadgil M. D. 1973. Growth form and reproductive effort in goldenrods (Solidago, Compositae). Am. Nat. 107: 651–661.

    Google Scholar 

  • Bazzaz F. A. 1979. The physiological ecology of plant succession. Ann. Rev. Ecol. Syst. 10: 351–371.

    Google Scholar 

  • Bazzaz F. A. & Carlson R. W. 1982. Photosynthetic acclimatisation to variability in the light environment of early and late successional plants. Oecologia (Berlin) 54: 313–316.

    Google Scholar 

  • Brown V. K. & Southwood T. R. E. 1987. Secondary succession: patterns and strategies. In: Gray A. J., Crawley M. J. & Edwards P. J. (eds), Colonization, succession and stability, pp. 315–337. Blackwell, Oxford.

    Google Scholar 

  • Cody M. L. 1966. A general theory of clutch size. Evolution 20: 174–184.

    Google Scholar 

  • Connell J. H. & Slatyer R. O. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111: 1119–1144.

    Google Scholar 

  • Drury W. H. & Nisbet I. C. T. 1973. Succession. J. Arn. Arb. 54: 331–368.

    Google Scholar 

  • Fekete G. 1985. A terresztris vegetáció szukcessziója: elméletek, modellek, valóság (Succession of terrestrial vegetation: theories, models, reality). In: Fekete G. (ed.), A cönológiai szukcesszió kérdései (Problems of coenological succession), pp. 31–63. Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Fekete G. & Melkó E. 1981. Reproductive allocation in the stages of sandy succession. Acta Bot. Hung. 27: 351–364.

    Google Scholar 

  • Fekete G. & Tuba Z., 1982. Photosynthetic activity in the stages of sandy succession. Acta Bot. Hung. 28: 291–296.

    Google Scholar 

  • Gaines M. S., Vogt K. J., Hamrick J. L. & Caldwell J. 1974. Reproductive strategies and growth patterns in sunflower (Helianthus). Am. Nat. 108: 889–894.

    Google Scholar 

  • Grace J. B. & Wetzel R. G. 1981. Phenotypic and genotypic components of growth and reproduction in Typha latifolia: experimental studies in marshes of differing successional maturity. Ecology 62: 789–801.

    Google Scholar 

  • Gray A. J. 1987. Genetic change during succession in plants. In: Gray A. J., Crawley M. J. & Edwards P. J. (eds), Colonization, succession and stability, pp. 273–293. Blackwell, Oxford.

    Google Scholar 

  • Hargitai L. 1940. Nagykörös növényvilága II. A homoki növényszövetkezetek (Plant life in Nagykörös II. The plant communities on sand). Bot. Közl. 37: 205–240.

    Google Scholar 

  • Harper J. L. & Ogden J. 1970. The reproductive strategy of higher plants. I. The concept of strategy with special reference to Senecio vulgaris. J. Ecol. 58: 681–698.

    Google Scholar 

  • Hermy M. 1987. Path analysis of standing crop and environmental variables in the field layer of two Belgian riverine forests. Vegetatio 70: 127–134.

    Google Scholar 

  • Le Roy H. L. 1960. Statistische Methoden der Populationsgenetik. Birkhauser, Basel.

    Google Scholar 

  • Li C. C. 1955. Population genetics. Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Luftensteiner H. W. 1980. Der Reproduktionsaufwand in vier Mitteleuropäischen Pflanzengemeinschaften. Pl. Syst. Evol. 135: 235–251.

    Google Scholar 

  • Melkó E. 1984. Reproductive allocation in the stages of sandy succession II. Acta Bot. Hung. 30: 129–137.

    Google Scholar 

  • Newell S. J. & Tramer E. J. 1978. Reproductive strategies in herbaceous plant communities during succession. Ecology 59: 228–234.

    Google Scholar 

  • Noble I. R. & Slatyer R. O. 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5–21.

    Google Scholar 

  • Reekie E. G. & Bazzaz F. A. 1987a. Reproductive effort in plants. 1. Carbon allocation to reproduction. Am. Nat. 129: 876–896.

    Google Scholar 

  • Reekie E. G. & Bazzaz F. A. 1987b. Reproductive effort in plants. 3. Effect of reproduction on vegetative activity. Am. Nat. 129: 907–919.

    Google Scholar 

  • Ross F. H. & Quinn J. A. 1977. Phenology and reproductive allocation in Andropogon scoparius (Gramineae) populations in communities of different successional stages. Am. J. Bot. 64: 535–540.

    Google Scholar 

  • Scheiner S. M. & Goodnight C. J. 1984. A comparison of phenotypic plasticity and genetic variation in populations of the grass Danthonia spicata. Evolution 38: 845–855.

    Google Scholar 

  • Stewart A. J. A. & Thompson K. 1982. Reproductive strategies of six herbaceous perennial species in relation to a successional sequence. Oecologia Berl. 52: 269–272.

    Google Scholar 

  • Szodfridt I. 1969. Borókás-nyárasok Bugac környékén (Juniperpoplar stands in the environs of Bugac). Bot. Közl. 56: 159–165.

    Google Scholar 

  • Wright S. 1921. Correlation and causation. J. Agr. Res. 20: 557–585.

    Google Scholar 

  • Wright S. 1934. The method of path coefficients. Ann. Math. Stat. 5: 161–215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fekete, G., Tuba, Z. & Melkó, E. Background processes at the population level during succession in grasslands on sand. Vegetatio 77, 33–41 (1988). https://doi.org/10.1007/BF00045747

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045747

Keywords

Navigation