Skip to main content
Log in

Community patterns on exposed cliffs in a Mediterranean calcareous mountain

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The main focus of this paper is to establish the community diversity pattern of vegetation in exposed-cliffs in the Mediterranean region and the relative importance of some environmental factors. Consequently, a study of a calcareous mesa in C-N Spain has been carried on, based on constrained ordination — CCA. The spatial scale approach for sampling was the patch on the cliff. The total number of taxa was 117 and the average per patch was 15. It is remarkable that the highest frequency plants are not rock specialists (chasmophytes), but generalist nanophanerophytes and chamaephytes.

A community pattern has been detected and related to the geomorphology and lithology of the cliff-nine communities. However, those patches of the vertical areas are very heterogeneous in number of taxa and size. Nevertheless, the community pools seem constant for each vertical cliff zone. Based on the ordination results and linear models, this variability may be interpreted as different succession stages of a cyclic process. The primary colonization of the bare rock by chasmophytes leads to the accumulation of soil because of the biological activity and the stock-trampling ability of these specialist plants. After that, the patches may be invaded by generalist chamaephytes (Festuco-Poetalia) and later even by several nanophanerophytes (Sideritido-Salvion lavandulifoliae and Berberidion vulgaris). The root activity of these plants in combination with other erosive events can return the system to the beginning.

A second objective included in the paper was related to the capacity of phytosociological approach, widely used in the Mediterranean region, to describe this type of community pattern. The surveyed mountain had previously studied in phytosociological terms. These relevés were compared through an assignation procedure — see text — to our community pattern. Both approaches seem to agree with high correspondence, but there are some differences that must be pointed out. They are related to the fact that spatial/ ecological heterogeneity does not always agree with the idealized phytosociological vegetation models, where only chasmophytic elements are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCA =:

detrended correspondence analysis

CCA =:

canonical correspondence analysis

References

  • AlvesR. J. V. & KolbekJ. 1993. Penumbral rock communities in campo rupestre sites in Brazil. Journal of Vegetation Science 4: 357–366.

    Google Scholar 

  • BartlettR. M., Matthes.SearsU. & LarsonD. W. 1990. Organization of the Niagara Escarpment cliff community. II. Characterization of the physical environment. Canadian Journal of Botany 68: 1931–1941.

    Google Scholar 

  • BemmerleinF. A. 1986. Bearbeitung von Lebensformengruppen mit numerischen Methoden. Untersuchungen an der Vegetation von Mauern in NW Spanien. Tuexenia 6: 391–403.

    Google Scholar 

  • Braun-BlanquetJ. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. 3. Aufl. Springer, Wien

    Google Scholar 

  • BurbanckM. P. & PlattR. B. 1964. Granite outcrop communities of the Piedmont Plateau in Georgia. Ecology 45: 292–306.

    Google Scholar 

  • BurrowsC. J. 1990. Processes of vegetation change. Unwin Hyman, Boston, Massachusets. USA.

    Google Scholar 

  • CastroviejoS. et al. (1986–1994). Flora Iberica. Vols. 1–4. C.S.I.C. Madrid.

    Google Scholar 

  • ChapinIIIF. S., WalkerL. R., FastieC. L. & SharmanL. C. 1994. Mechanism of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monograghs 64: 149–175.

    Google Scholar 

  • DaviesP. H. 1951. Cliff vegetation in the eastern Mediterranean. Journal of Ecology 39: 63–72.

    Google Scholar 

  • delMoralR. & WoodD. M. 1993. Early primary succession on the volcano Mount St. Helens. Journal of Vegetation Science 4: 223–234.

    Google Scholar 

  • Díaz-González, T. E. 1989. Biogeografía y sintaxonomía de las comunidades rupícolas (ensayo preliminar para una revisión de la clase Asplenietea trichomanis en la península ibérica, Baleares y Canarias). Com. IX Jornadas de Fitosociología. U. Alcalá de Hanares.

  • DaddM. E., SilvertownJ., McConwayK., PottsJ. & CrawleyM. 1994. Application of the British National Vegetation Classification to the communities of the Park Grass Experiment through time. Folia Geobotanica et Phytotaxonomica. 29: 321–334.

    Google Scholar 

  • Escudero, A. 1992. Estudio fitoecológico de las comunidades rupícolas y glerícolas del macizo del Moncayo. Tesis doctoral. Universidad Complutense de Madrid. Madrid.

  • EscuderoA., GavilánR. & PajarónS. 1994. Saxicolous communities in the Sierra del Moncayo (Spain). A classificatory approach. Coenoses 9(1): 15–24.

    Google Scholar 

  • EscuderoA. & HerreroA. 1995. Algunas comunidades saxícolas del Moncayo. Lazaroa 15: 193–204.

    Google Scholar 

  • EscuderoA. & PajarónS. 1994. Numerical syntaxonomy of the Asplenietalia petrarchae in the Iberian Peninsula. Journal of Vegetation Science 5(1): 205–214.

    Google Scholar 

  • EscuderoA. & PajarónS. 1995. La vegetación rupícola del Moncayo silíceo. Una aproximación basada en ordenaciones. Lazaroa 16: 103–130.

    Google Scholar 

  • EscuderoA. & RegatoP. 1992. Ordenación de la vegetación de las torcas de la Serranía de Cuenca y sus relaciones con algunos factores del medio. Orsis 7: 41–55.

    Google Scholar 

  • FarrelT.M. 1991. Models and mechanisms of succession: an example from a rocky intertidal community. Ecological Monographs 61: 95–113.

    Google Scholar 

  • Gómez-CampoC. 1987. Libro Rojo de las especies vegetales amenazadas de España Peninsular e Islas Baleares. ICONA, Madrid.

    Google Scholar 

  • GoodallD. W. 1966. Deviant index — a new tool for numerical taxonomy. Nature 210: 216.

    Google Scholar 

  • GuitiánJ. & SánchezJ. M. 1992. Flowering phenology and fruit set of Petrocoptis grandiflora (Caryophyllaceae). International Journal of Plant Science 153: 409–412.

    Google Scholar 

  • HakesW. 1994. On the predictive power of numerical and Braun-Blanquet classification: an example from beechwoods. Journal of Vegetation Science 5: 133–160.

    Google Scholar 

  • HerreraM. 1988. Biología y ecología de Viola cazorlensis I. Variabilidad de caracteres florales. Anales Jardín Botánico de Madrid 45(1): 233–246.

    Google Scholar 

  • HeywoodV. H. 1953. El concepto de asociación en las comunidades rupícolas. Anales Instituto Botánico Cavanilles 11(2): 463–481.

    Google Scholar 

  • HillM. O. 1989. Computerized matching of relevés and association tables, with an application to the British National Vegetacion Classification. Vegetatio 83: 187–194.

    Google Scholar 

  • HillM. O. & GauchH. G. 1980. Detrended Correspondence Analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • HillM. O., BunceR. G. H. & ShawM. W. 1975. Indicator species analysis, a divisive polythetic method of classification and its application to a survey of native pinewoods in Scotland. Journal of Ecology 63: 597–613.

    Google Scholar 

  • HruškaK. 1987. Syntaxonomic study of the Italian wall vegetation. Vegetatio 73: 13–20.

    Google Scholar 

  • IriondoJ. M., González-BenitoE. & MartínC. 1994. Estudios demográficos y fenológicos en el endemismo madrileñoErodium paularense Fdez.-Glez. & Izco (Geraniaceae). Studia Oecologica 10/11: 185–191.

    Google Scholar 

  • JacksonG. & SheldonJ. 1949. The vegetation of magnesian limestone cliffs at Markland Grips near Sheffield. Journal of Ecology 37: 38–50.

    Google Scholar 

  • JohnE. A. & DaleM. R. T. 1990. Environmental correlates of species distributions in a saxicolous lichen community. Journal of Vegetation Science 1: 385–392.

    Google Scholar 

  • KazmierczakE., van derMaarelE. & NoestV. 1995. Plant communities in kettle-holes in central Poland: chance ocurrence of species? Journal of Vegetation Science 6: 863–874.

    Google Scholar 

  • LarsonD. W., SpringS. H., Matthes-SearsU. & BartlettR. M. 1989. Organization of Niagara Escarpment cliff community. Canadian Journal of Botany 67: 2731–2742.

    Google Scholar 

  • Matthes-SearsU. & LarsonD. W. 1995. Rootong characteristics of trees in rock: a study of Thuja occidentalis on cliff faces. International Journal of Plant Science 156: 679–686.

    Google Scholar 

  • MeierH. & Braun-BlanquetJ. 1934. Prodrome des groupements végétaux. 2. (Classe des Asplenietales rupestres-Groupements rupicoles). Marie-Lavit. Montpellier.

    Google Scholar 

  • MontserratP. 1975. Comunidades relícticas geomorfológicas. Anales Instituto Botánico Cavanilles 32(2): 397–404.

    Google Scholar 

  • MontserratP. 1980. Continentalidades climáticas pirenaicas. Publicaciones del Centro Pirenaico de Biología Experimental 12: 63–83.

    Google Scholar 

  • MotaJ., GómezF. & ValleF. 1991. Rupicolous vegetation of the Betic ranges (south Spain). Vegetatio 94: 101–113.

    Google Scholar 

  • MucinaL. & van derMaarelE. 1989. Twenty years of numerical syntaxonomy. Vegetatio 12: 116.

    Google Scholar 

  • NavarroG. 1990. Contribución al conocimiento de la flora del Moncayo. Opuscula Botanica Pharmaciae Complutensis 5: 5–64.

    Google Scholar 

  • NavarroL., GuitiánJ. & GuitiánP. 1993. Reproductive biology of Petrocoptis grandiflora Rothm, (Caryiophyllaceae), a species endemic to Northwest Iberian Peninsula. Flora 188: 253–261.

    Google Scholar 

  • ØklandR.H. 1990. Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Sommerfeltia, Suppl. 1: 9–233.

    Google Scholar 

  • OksanenJ. & HuttunenP. 1989. Finding a common ordination for several data sets by individual differences scaling. Vegetatio 83: 137–145.

    Google Scholar 

  • OksanenJ. & TonteriT. 1995. Rate of compositional turnover along gradients and total gradient lenght. Journal of Vegetation Science 6: 815–824.

    Google Scholar 

  • OostingO. T. & AndersonL. E. 1937. The vegetation of a barefaced cliff in western North Carolina. Ecology 18: 280–292.

    Google Scholar 

  • OrlóciL. 1978. Multivariate analysis in vegetation research. 2nd ed. Junk. The Hague.

    Google Scholar 

  • Pellicer, F. 1984. Geomorfología de las cadenas Ibéricas entre el Jalón y el Moncayo. Cuad. Est. Borjanos 11/12. Zaragoza.

  • PickettS. T. A. & WhiteP. S. (eds) 1985. The ecology of natural disturbance and patch dynamics. Academic Press, London.

    Google Scholar 

  • Rivas-MartínezS. 1960. Roca, clima y comunidades rupícolas. Sinopsis de las alianzas hispanas de Asplenietea rupestris. Anales Real Academia de Farmacia 26: 153–168.

    Google Scholar 

  • ShureD. J. & RagsdaleH. L. 1977. Patterns of primary succession on granite outcrop surfaces. Ecology 58: 993–1006.

    Google Scholar 

  • Snogerup, S. 1971. Evolutionary and plant geographical aspects of chasmophytic communities. In: Davis, P.H., Harper, P.C. & Hedge, I.C. (eds). Plant life of South-West Asia, pp. 157–170. Edinburgh.

  • StanckW. & OrlóciL. 1973. A comparison of Braun-Blanquet's method with sum-of-squares agglomeration for vegetation classification. Vegetatio 27: 323–345.

    Google Scholar 

  • ter BraakC. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.

    Google Scholar 

  • ter BraakC. 1988. CANOCO — a Fortran program for canonical community ordination by (partial) (detrended) (canonical) correpondence analysis, principal component analysis and redundance analysis (version 2.19). Groep Landbouwwiskunde. Wageningen.

    Google Scholar 

  • ter BraakC. & PrenticeI. 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.

    Google Scholar 

  • TilmanD. 1982. Resource competition and community structure. Princeton University Press, Princeton, New Jersey, USA.

    Google Scholar 

  • TonteriT., MikkolaK. & LahtiT. 1990. Compositional gradients in the forest vegetation of Finland. Journal of Vegetation Science. 1: 691–698.

    Google Scholar 

  • TutinT.G. et al. (1964–1980). Flora Europea. Vols 1–5 Cambridge University Press, Cambridge.

    Google Scholar 

  • WesthoffW. & van derMaarelE. 1978. The Braun Blanquet approach. In: WhittakerR. H. (ed). Classification of Plant Communities. 2nd ed. Junk, The Hague.

    Google Scholar 

  • WieglebG. 1986. Grenzen und Möglichkeiten der Daten-analyse in der Pflanzenökologie. Tüexenia 6: 365–377.

    Google Scholar 

  • WildiO. 1989. A new numerical solution to traditional phytosociological tabular classification. Vegetatio 81: 95–106.

    Google Scholar 

  • WinterringerG. S. & VestalG. 1956. Rock-ledge vegetation in southern Illinois. Ecological Monographs 26: 105–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escudero, A. Community patterns on exposed cliffs in a Mediterranean calcareous mountain. Vegetatio 125, 99–110 (1996). https://doi.org/10.1007/BF00045208

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045208

Key words

Navigation