Skip to main content
Log in

Stable isotopic survey of the role of macrophytes in the carbon flow of aquatic foodwebs

  • Short Note
  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Whether aquatic animals rely primarily for sustenance upon vascular macrophytes or attached algae has been often debated. A compilation of carbon isotope data from the literature for coastal seagrass meadows, estuarine salt marshes, and freshwater lakes and rivers indicates that animal δ13C values more closely approximate those of attached algae than they do those of vascular plants. This empirical synthesis supports results from individual studies in suggesting that macrophytes are unlikely to play an exclusive and direct dietary role in aquatic foodwebs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Araujo-Lima C., Forsberg B. R., Victoria R. & Martinelli L. 1986. Energy sources for detritivorous fishes in the Amazon. Science 234: 1256–1258.

    Google Scholar 

  • Boon P. I. & Bunn S. E. 1994. Variations in the stable isotope composition of aquatic plants and their implications for food web analysis. Aquat. Bot. 48: 99–108.

    Google Scholar 

  • Bunn S. E. & Boon P. I. 1993. What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis. Oecologia 96: 85–94.

    Google Scholar 

  • Cassie R. M. 1954. Some uses of probability paper in the analysis of size frequency distributions. Aust. J. Mar. Freshw. Res. 5: 513–522.

    Google Scholar 

  • Cooper L. W. & McRoy C. P. 1988. Stable carbon isotope ratio variations in marine macrophytes along intertidal gradients. Oecologia 77: 238–241.

    Google Scholar 

  • Currin C. A., Newell S. Y. & Paerl H. W. 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Mar. Ecol. Prog. Ser. 121: 99–116.

    Google Scholar 

  • Dauby P. 1989. The stable carbon isotope ratios in benthic food webs of the Gulf of Calvi, Corsica. Cont. Shelf Res. 9: 181–195.

    Google Scholar 

  • del Girogio, P. A. & France, R. L. 1996. Ecosystem-specific patterns in the relationship between zooplankton and POM or microplankton δ13C. Limnol. Oceanogr. (In press).

  • DeNiro M. J. & Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42: 495–506.

    Google Scholar 

  • Forsberg B. R., Araujo-Lima C., Martinelli L. A., Victoria R. L. & Bonassi J. A., 1993. Autotrophic carbon sources for fish of the central Amazon. Ecology 74: 643–652.

    Google Scholar 

  • France R. 1995a. Differentiation between littoral and pelagic foodwebs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40: 1310–1313.

    Google Scholar 

  • France R. 1995b. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar. Ecol. Prog. Ser. 124: 307–312.

    Google Scholar 

  • France R. 1995c. Critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystems. Can. J. Fish. aquat. Sci. 52: 651–656.

    Google Scholar 

  • France R. L. 1995d. Source variability in δ15N of autotrophs as a potential aid in measuring allochthony in freshwaters. Ecography 18: 318–320.

    Google Scholar 

  • France, R. L. 1995e. Scope for use of stable carbon isotopes in discerning the incorporation of forest detritus into aquatic foodwebs. Hydrobiologia (In press).

  • France R. L., Holmes J. & Lynch A. 1991. Use of size-frequency data to estimate the age composition of crayfish populations. Can. J. Fish. aquat. Sci. 48: 2324–2332.

    Google Scholar 

  • Frohne W. C. 1956. The provendering role of the larger aquatic plants. Ecology 37: 387–388.

    Google Scholar 

  • Fry B. 1994. 13C/12C ratios and the trophic importance of algae in Florida Syringodium filiforme seagrass meadows. Mar. Biol. 79: 11–19.

    Google Scholar 

  • Fry B. & Sherr E. B. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27: 15–47.

    Google Scholar 

  • Fry B., Scalan R. S. & Parker P. L. 1983. 12C/13C ratios in marine food webs of the Torres Strait, Queensland. Aust. J. Mar. Freshw. Res. 54: 707–716.

    Google Scholar 

  • Fry B., Macko S. A. & Zieman J. C. 1986. Review of stable isotopic investigations of food webs in seagrass meadows. Florida Mar. Res. Publ. 42: 189–209.

    Google Scholar 

  • Hackney C. T. & Haines E. B. 1980. Stable carbon isotope composition of fauna and organic matter collected in a Mississippi estuary. Estuar. Coast. Mar. Sci. 10: 703–708.

    Google Scholar 

  • Haines E. B. 1976a. Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh. Limnol. Oceanogr. 22: 880–883.

    Google Scholar 

  • Haines E. B. 1976b. Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia Salt Marsh. Estuar. Coast. Mar. Sci. 4: 609–616.

    Google Scholar 

  • Hamilton S. K. & Lewis W. M. 1992. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela. Geochim. Cosmochim. Acta 56: 4237–4246.

    Google Scholar 

  • Hamilton S. K., Lewis W. M. & Sippel S. J. 1992. Energy sources for aquatic animals in the Orinoco River floodplain: evidence from stable isotopes. Oecologia 89: 324–330.

    Google Scholar 

  • Harding J. P. 1949. The use of probability paper for the graphical analysis of polymodal frequency distributions. J. Mar. Biol. Assoc. U.K. 28: 141–153.

    Google Scholar 

  • Hughes E. H. & Sherr E. B. 1983. Subtidal food webs in a Georgia estuary: δ13C analysis. J. Exp. Mar. Biol. Ecol. 67: 227–242.

    Google Scholar 

  • Kitting C. L., Fry B. & Morgan M. D. 1984. Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows. Oecologia 62: 145–149.

    Google Scholar 

  • LaZerte B. D. & Szalados J. E. 1982. Stable carbon isotope ratios of submerged freshwater macrophytes. Limnol. Oceanogr. 27: 413–418.

    Google Scholar 

  • Lodge D. M. 1991. Herbivory on freshwater macrophytes. Aquat. Bot. 41: 195–224.

    Google Scholar 

  • Mann K. H. 1988. Production and the use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol. Oceanogr. 33: 910–930.

    Google Scholar 

  • Newman R. M. 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J. N. Am. Benthol. Soc. 10: 89–114.

    Google Scholar 

  • Osmond C. B., Valaane N., Haslam S. M., Votila P. & Roksandic Z. 1981. Comparisons of δ13C values i leaves of aquatic macrophytes from different habitats in Britain and Finland: some implications for photosynthesis processes in aquatic plants. Oecologia 50: 117–124.

    Google Scholar 

  • Peterson B. J. & Fry B. 1987. Stable isotopes in ecosystem studies Ann. Rev. Ecol. System. 18: 293–320.

    Google Scholar 

  • Peterson B. J. & Howarth R. W. 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnol. Oceanogr. 32: 1195–1213.

    Google Scholar 

  • Peterson B. J., Howarth R. W. & Garritt R. H. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227: 1361–1363.

    Google Scholar 

  • Peterson B. J., Howarth R. W. & Garritt R. H. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67: 865–874.

    Google Scholar 

  • Rounick J. S. & Winterbourn M. J. 1986. Stable carbon isotopes and carbon flow in ecosystems. BioScience 36: 171–177.

    Google Scholar 

  • Sackett W. M., Eckelmann W. R., Bender M. L. & Be A. W. 1965. Temperature dependence of carbon isotope composition in marine plankton and sediments. Science 148: 235–237.

    Google Scholar 

  • Simenstad C. A. & Wissmar R. C. 1985. δ13C evidence of the origins and fates of organic carbon in estuarine and nearshore food webs. Mar. Ecol. Prog. Ser. 22: 141–152.

    Google Scholar 

  • Simenstad C. A., Duggins D. O. & Quay P. D. 1993. High turnover of inorganic carbon in kelp habitats as a source of δ13C variability in marine food webs. Mar. Biol. 116: 147–160.

    Google Scholar 

  • Stephenson R. L., Tan F. C. & Mann K. H. 1984. Stable isotope variability in marine macrophytes and its implications for food web studies. Mar. Biol. 81: 223–230.

    Google Scholar 

  • Stephenson R. L., Tan F. C. & Mann K. H. 1986. Use of stable carbon isotope ratios to compare plant material and potential consumers in a seagrass bed and a kelp bed in Nova Scotia, Canada. Mar. Ecol. Prog. Ser. 30: 1–7.

    Google Scholar 

  • Sullivan M. J. & Moncreiff C. A. 1990. Edaphic algae are an important component of salt-marsh food-webs: evidence from multiple stable isotope analyses. Mar. Ecol. Prog. Ser. 62: 149–159.

    Google Scholar 

  • Thayer G. W., Parker P. L., LaCroix M. W. & Fry B. 1978. The stable carbon isotope ratio of some components of an eelgrass, Zostera marina, bed. Oecologia 35: 1–12.

    Google Scholar 

  • Ward H. B. & Whipple G. C. 1918. Fresh-water Biology. John wiley and Sons, New York, USA 1111 pp.

    Google Scholar 

  • Wienke C. & Fisher G., 1990. Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar. Ecol. Prog. Ser. 65: 283–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

France, R.L. Stable isotopic survey of the role of macrophytes in the carbon flow of aquatic foodwebs. Vegetatio 124, 67–72 (1996). https://doi.org/10.1007/BF00045145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045145

Key words

Navigation