Skip to main content
Log in

Water temperature behaviour in the River Danube during the twentieth century

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Monthly mean water temperatures in the River Danube at Linz, Austria during the period 1901–1990 have been investigated in relation to equivalent information on air temperature and river discharge. Statistical analysis revealed a significant increase in monthly mean water temperatures of 0.8 °C and showed strongest rises in mean values for autumn and early winter months. No statistically significant trends were evident for air temperature or river discharge, and rising water temperatures are likely to reflect increasing human modification of the river system. A strong overall correlation between monthly mean water and air temperatures at Linz was made up of a series of more scattered and less steep water/air temperature relationships for individual months, while the influence of snowmelt runoff depressed average water temperatures in the spring and early summer period by 1.5 °C. Multiple regression relationships developed for individual months from data on air temperature, river discharge and time trend during the study period were able to predict monthly mean water temperatures in 1991 and 1992 with a root mean square error of 0.5 °C. These regression equations, when combined with scenarios of future changes in air temperature and river flow as a consequence of global warming, suggest that only modest rises in monthly mean water temperature will be experienced in the River Danube by the end of the present century, but that increases of > 1 °C for all months, and > 2 °C for the autumn period of low flows, can be anticipated by the year 2030.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacalbasa-Dobrovici, N., 1989. The Danube River and its fisheries. In D. P. Dodge (ed.), Proceedings of the International Large River Symposium (LARS). Canadian Special Publication of Fisheries and Aquatic Sciences 106: 455–468.

  • Bartholow, J. M., 1989. Stream temperature investigations: Field and analytic methods. Instream Flow Information Paper No. 13, US Fish Wildlife Service Biological Report 89 (17), 139 pp.

  • Bartholow, J. M., 1991. A modeling assessment of the thermal regime for an urban sport fishery. Envir. Mgmt 15: 833–845.

    Google Scholar 

  • Beschta, R. L. & R. L. Taylor, 1988. Stream temperature increases and land use in a forested Oregon watershed. Wat. Resour. Bull. 24: 19–25.

    Google Scholar 

  • Blakey, J. F., 1966. Temperature of surface waters in the conterminous United States. US Geological Survey Hydrologic Investigations Atlas: HA-235.

  • Bravo, H. R., W. F. Krajewski & F. M. Holly, 1993. State space model for river temperature prediction. Wat. Resour. Res. 29: 1457–1466.

    Google Scholar 

  • Bultot, F., A. Coppens, G. L. Dupriez, D. Gellens & F. Meulenberghs, 1988. Repercussions of a CO2 doubling on the water cycle and on the water balance a case study for Belgium. J. Hydrol. 99: 319–347.

    Google Scholar 

  • Bultot, F., D. Gellens, M. Spreafico & B. Schädler, 1992. Repercussions of a CO2 doubling on the water balance — a case study in Switzerland. J. Hydrol. 137: 199–208.

    Google Scholar 

  • Cooter, E. J. & W. S. Cooter, 1990. Impacts of greenhouse warming on water temperature and water quality in the southern United States. Climate Res. 1: 1–12.

    Google Scholar 

  • Croley, T. E., A. R. Giaquinta & R. A. Woodhouse, 1981. River thermal standards costs in the upper midwest. Am. Soc. Civ. Eng., J. Energ. Div. Proc. 107(EY1): 65–77.

    Google Scholar 

  • Crisp, D. T., 1988. Water tempearture data from streams and rivers in north east England. Freshwat. Biol. Ass. Occasional Publication 26: 1–26.

    Google Scholar 

  • Eckel, Q. & H. Reuter, 1951. Zur Berechnung des Sommerlichen Wärmeumsatzes in Flussläufen. Geogr. Annlr. 31: 188–209.

    Google Scholar 

  • Hengeveld, H. G., 1990. Global climate change: implications for air temperature and water supply in Canada. Trans. am. Fish. Soc. 119: 167–182.

    Google Scholar 

  • Hirsch, R. M., J. R. Slack & R. A. Smith, 1982. Techniques of trend analysis for monthly water quality data. Wat. Resour. Res. 18: 107–121.

    Google Scholar 

  • Hostetler, S. W., 1991. Analysis and modeling of long-term stream temperatures on the Steamboat Creek Basin, Oregon: implications for land use and fish habitat. Wat. Resour. Bull. 27: 637–647.

    Google Scholar 

  • Jeppesen, E. & T. M. Iversen, 1987. Two simple models for estimating daily mean water temperatures and diel variations in a Danish low gradient stream. Oikos 49: 149–155.

    Google Scholar 

  • Kahlig, P., 1977. Über zwei Versionen der Exponentialmethode der Flußtemperatur-Berechnung. Arch. Met. Geoph. Biokl., Ser. A. 25: 367–381.

    Google Scholar 

  • Kwadijk, J. C. J., 1991. Sensitivity of the River Rhine discharge to environmental change, a first tentative assessment. Earth Surface Processes and Landforms 16: 627–637.

    Google Scholar 

  • Langford, T. E., 1983. Electricity generation and the ecology of natural waters. Liverpool University Press.

  • Lauscher, F., 1963. Flußtemperaturen in den Niederungen des mittleren Donaugebietes. Wetter und Leben 15: 99–106.

    Google Scholar 

  • Liepolt, R., 1972. Uses of the Danube River. In R. T. Oglesby, C. A. Carson & J. A. McCann (eds), River Ecology and Man. Academic Press, New York: 233–249.

    Google Scholar 

  • Long, L. L., 1972. Mathematical modeling of river water temperatures. Dissertation, University of Missouri, Rolla, USA, 108 pp.

    Google Scholar 

  • Ludwig, Ch., H. Ranner, G. Kavka, W. Kohl & U. Humpesch, 1990. Long-term and seasonal aspects of the water quality of the River Danube within the region of Vienna (Austria). In M. Miloradov (ed.), Water Pollution Control in the Danube Basin. International Association on Water Pollution Research and Control: 51–58.

  • Mackey, A. P. & A. D. Berrie, 1991. The prediction of water temperatures in chalk streams from air temperatures. Hydrobiologia 210: 183–189.

    Google Scholar 

  • Meisner, J. D., 1990. Potential loss of thermal habitat for brook trout, due to climatic warming, in two southern Ontario streams. Can. J. Fish. aquat. Sci. 119: 282–291.

    Google Scholar 

  • Nobilis, F., 1978. Zur Frage des wahrscheinlichen Auftretens extrem hoher Wassertemperaturen der Donau bei Wien. Oesterriech. Wasserwirtschaft 30: 125–128.

    Google Scholar 

  • Ozaki, V. L., 1988. Geomorphic and hydrologic conditions for cold pool formation on Redwood Creek, California. Redwood National Park Research and Development Report 24, 57pp.

  • Quinn, J. M., R. B. Williamson, R. K. Smith & M. L. Vickers, 1992. Effects of riparian grazing and channelisation on streams in Southland, New Zealand. 2. Benthic invertebrates. N.Z. J. mar. freshwat. Res. 26: 259–273.

    Google Scholar 

  • Rutherford, J. C., B. L. Williams & R. A. Hoare, 1992. Transverse mixing and surface heat exchange in the Waikato River: a comparison of two models. N.Z. J. mar. freshwat. Res. 26, 435–452.

    Google Scholar 

  • Rutherford, J. C., J. B. Macaskill & B. L. Williams, 1993. Natural water temperature variations in the lower Waikato River, New Zealand. N.Z. J. mar. freshwat. Res. 27: 71–85.

    Google Scholar 

  • Sinokrot, B. A. & H. G. Stefan, 1993. Stream temperature dynamics: measurements and modeling. Wat. Resour. Res. 29: 2299–2312.

    Google Scholar 

  • Smith, K., 1981. The prediction of river water temperatures. Bull. Sci. Hydrol. 26: 19–32.

    Google Scholar 

  • Steele, T. D., 1982. A characterization of stream temperatures in Pakistan using harmonic analysis. Hydrol. Sci. J. 4: 451–467.

    Google Scholar 

  • Stefan, H. G. & E. B. Preud homme, 1993. Stream temperature estimation from air temperature. Wat. Resour. Bull. 29: 27–45.

    Google Scholar 

  • Stevens, H. H., Jr., J. F. Ficke & G. F. Smoot, 1975. Water temperature, influential factors, field measurement and data presentation. Techniques of water-resources investigations of the US Geological Survey. Book l, collection of water data by direct measurement, chapter D1, 65 pp.

  • Theurer, F. D., I. Lines & T. Nelson, 1985. Interaction between riparian vegetation, water temperature, and salmonid habitat in the Tucannon River. Wat. Resour. Bull. 21: 53–64.

    Google Scholar 

  • United Kingdom Climate Change Impacts Review Group, 1991. The potential effects of climate change in the United Kingdom. H.M.S.O., London, 123 pp.

    Google Scholar 

  • Ward, J. V., 1985. Thermal characteristics of running waters. Hydrobiologia 125: 31–46.

    Google Scholar 

  • Ward, J. V., 1992. Aquatic insect ecology, 1. Biology and habitat. J. Wiley & Sons, New York, 438 pp.

    Google Scholar 

  • Webb, B. W. & D. E. Walling, 1992. Long term water temperature behaviour and trends in a Devon, UK, river system. Hydrol. Sci. J. 37: 567–580.

    Google Scholar 

  • Webb, B. W. & D. E. Walling, 1993a. Temporal variability in the impact of river regulation on thermal regime and some biological implications. Freshwat. Biol. 29: 161–182.

    Google Scholar 

  • Webb, B. W. & D. E. Walling, 1993b. Longer-term water temperature behaviour in an upland stream. Hydrol. Proces. 7: 19–32.

    Google Scholar 

  • Wundt, W., 1967. Der Temperaturgang an mitteleuropäischen Fülussen. Petermanns Geogr. Mitt. 111: 81–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, B.W., Nobilis, F. Water temperature behaviour in the River Danube during the twentieth century. Hydrobiologia 291, 105–113 (1994). https://doi.org/10.1007/BF00044439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044439

Key words

Navigation