Skip to main content
Log in

Oxidative processes as indicators of chemical stress in marine bivalves

  • Published:
Journal of Aquatic Ecosystem Health

Abstract

Deleterious effects of environmental contaminants could be due to enhanced prooxidant forces overcoming antioxidant defences. Before practical biomarkers based on free radical biology will be generally accepted and validated in situ, additional research is required concerning normal physiological and environmental influences on the relevant systems. The aims of this study were to evaluate in situ the importance of oxyradical production in the presence and absence of pollutants and to characterize some antioxidant systems in Mytilus edulis L. Specimens of M. edulis L. were transplanted from a reference site (Franquelin) to Baie Comeau (Baie des Anglais), on the North shore of the St. Lawrence maritime estuary, where are found aluminium and pulp and paper plants. An oxidative stress was observed in mussels submitted to a chronic exposure in the polluted environment. Variations of pro-and anti-oxidant molecules involved in oxidative processes were related in part to seasonal and physico-chemical influences. Catalase activity, malondialdehyde and glutathione concentrations will be useful as biomarkers of stress in situ since they react to anthropogenic influence and to abiotic factors such as emersion period and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi, H., 1984. Catalase. Methods Enzymol. 105: 121–126.

    Google Scholar 

  • Anderson, M., 1985. Determination of GSH and GSSG in biologic samples. Methods Enzymol. 113: 548–555.

    Google Scholar 

  • Ankley, G. T., R. E. Reinert, A. E. Wade & R. A. White, 1985. Temperature compensation in the hepatic mixed-function oxidase system of bluegill. Comp. Biochem. Physiol. 18: 125–129.

    Google Scholar 

  • Bayne, B. L., 1986. Measuring the effects of pollution at the cellular level and organism level. In: G. Kullenger (ed.), The Role of the Oceans as a Waste Disposal Option. pp. 617–634. D. Reidel Publishing Company, Dordrecht.

    Google Scholar 

  • Bayne, B. L., M. N. Moore & R. K. Koehn, 1981. Lysosomes and the response by Mytilus edulis L. to an increase in salinity. Mar. Biol. Lett. 2: 193–204.

    Google Scholar 

  • Bertrand, P., G. Verreault, Y. Vigneault & G. Walsh, 1988. Biphényles polychlorés dans les sédiments et les organismes marins de la Baie des Anglais (Côte-Nord du Golfe Saint-Laurent). Rapp. tech. can. Sc. hal. et aquat. no. 1669. ix-41 pp.

  • Blackstock, J., 1984. Biochemical metabolic regulatory responses of marine invertebrates to natural environmental change and marine pollution. Oceanogr. Mar. Biol. Ann. Rev. 22: 263–313.

    Google Scholar 

  • Bradford, M., 1976. Determination of proteins. Ann. Biochem. 72: 248–256.

    Google Scholar 

  • Brehaut, R. N., 1982. Ecology of rocky shores. In: Studies in Biology, Vol. 139: 44–51. Edward Arnold, London.

    Google Scholar 

  • Cajaraville, M. P., J. A. Uranga & E. Angulo, 1992. Comparative effects of the water accommodated fraction of three oils on mussels. 3. Quantitative histochemistry of enzymes related to the detoxication metabolism. Comp. Biochem. Physiol. 103C: 369–377.

    Google Scholar 

  • Canadian National Research Council (CNRC), 1985. The role of biochemical indicators in the assessment of ecosystem health-Their development and validation, National Research Council Canada, NRCC report no. 24371, 119 pp.

  • Etzel, K. R., S. G. Hapiro & R. J. Cousins, 1979. Regulation of liver metallothionein and plasma zinc by the glucocorticoid dexamethasone. Biochem. Biophys. Res. Commun. 89: 1120–1126.

    Google Scholar 

  • Freeman, K. R., K. L. Perry & T. G. DiBacco, 1992. Morphology, condition and reproduction of two co-occuring species of Mytilus at a Nova Scotia mussel farm. Bull. Aquat. Assoc. Can. 92 (3): 8–10.

    Google Scholar 

  • Garcia-Martinez, P., S. O'Hara, G. W. Winston & D. R. Livingstone, 1989. Oxyradical generation and redox cycling mechanisms in digestive gland microsomes of the common mussel Mytilus edulis L. Mar. Environ. Res. 28: 271–274.

    Google Scholar 

  • Goel, M. R., M. A. Shara & S. J. Stohs, 1988. Induction of lipid peroxidation by HCCH, dieldrin, TCDD, CC14 and HCB in rats. Bull. Environ. Contam. Toxicol. 40: 255–262.

    Google Scholar 

  • Harman, D., 1986. Free radical theory of aging: Role of free radicals in the origination and evolution of life, aging and disease processes. In: J. Johnson (ed.), Biology of Aging. pp. 3–50. Liss, New York.

    Google Scholar 

  • Huggett, R. J., R. A. Kimerle, P. M. MehrleJr. & H. L. Bergman (eds), 1992. Biomarkers. Biochemical, Physiological, and Histological Markers of Anthropogenic Stress. Boca Raton, Fla., Lewis Publishers, 347 pp.

    Google Scholar 

  • Ishikawa, T. & H. Sies, 1988. Glutathione as an antioxydant: toxicological aspects. In: D. Dolphin, R. Poulson & O. Avramovic (eds), Glutathione: Chemical, Biochemical and Medical Aspects, Part B. John Wiley & Sons, New York.

    Google Scholar 

  • Ji, L. L., D. Dillon & E. Wu, 1990. Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Amer. J. Physiol. 258: R918-R923.

    Google Scholar 

  • Jimenez, B. D., L. S. Burtis, G. H. Ezell, B. Z. Egan, N. E. Lee, J. J. Beauchamp & J. F. McCarthy, 1988. The mixed function oxidase system of bluegill sunfish, Lepomis macrochirus: Correlation of activities in experimental and wild fish. Environ. Toxicol. Chem. 7: 623–634.

    Google Scholar 

  • Karin, M., 1985. Metallothioneins: Proteins in search of function. Cell. 41: 9–10.

    Google Scholar 

  • Kosower, N. S. & E. M. Kosower, 1978. The glutathione status of cells. Internat. Rev. Cytol. 54: 109.

    Google Scholar 

  • Mallet, A. L., C. A. E. Carver & K. R. Freeman, 1990. Summer mortality of the blue mussel in eastern Canada: Spatial, temporal, stock and age variation. Mar. Ecol. Prog. Ser. 67: 35–42.

    Google Scholar 

  • Moore, M. N., 1976. Cytochemical demonstration of latency of lysosomal hydrolase in digestive cells of the common mussel, Mytilus edulis, and changes induced by thermal stress. Cell Tissue Res. 175: 279–287.

    Google Scholar 

  • Moore, M. N. & A. Viarengo, 1987. Lysosomal membrane fragility and catabolism of cytosolic proteins: Evidence for a direct relationship. Experientia 43: 320–323.

    Google Scholar 

  • Pellerin-Massicotte, J., B. Vincent & E. Pelletier, 1993. Evaluation écotoxicologique de la baie des Anglais à Baie-Comeau (Québec). Water Pollut. Res. J. Can. 28: 665–686.

    Google Scholar 

  • Phillips, D. J. H., 1986. Use of bio-indicators in monitoring conservative contaminants: Program design imperatives. Mar. Pollut. Bull. 17: 10–17.

    Google Scholar 

  • Ribera, D., J. F. Narbonne, M. Daubeze & X. Michel, 1989. Characterisation, tissue distribution and sexual differences of some parameters related to lipid peroxidation in mussels. Mar. Environ. Res. 28: 279–283.

    Google Scholar 

  • Sarrazin, J., 1993. Détermination de paramètres nutritionnels chez Mya arenaria. Mémoire de maitrise, UQAR, 102 pp.

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. W. H. Freeman & Co., New York, 859 pp.

    Google Scholar 

  • Sunderman, F. W., A. Marzouk, S. M. Hopfer, O. Zaharia & M. C. Reid, 1985. Increased lipid peroxidation in tissues of nickel chloride-treated rats. Ann. Clin. Lab. Sci. 15: 229–236.

    Google Scholar 

  • Tremblay, R., 1992. Caractérisation de certains processus nutritionnels à différentes échelles temporelles chez deux bivalves vivant en zone intertidale dans l'estuarie maritime du Saint-Laurent. Mémoire de maitrisc, UQAR, 94 pp.

  • Viarengo, A., M. Pertica, L. Canesi, R. Accomando, G. Mancinelli & M. Orunesu, 1989. Lipid peroxidation and level of antioxydant compounds (GSH, Vitamin E) in the digestive glands of mussels of three different age groups exposed to anaerobic and aerobic conditions. Mar. Environ. Res. 28: 291–295.

    Google Scholar 

  • Vina, J., 1990. Glutathione: Metabolism and Physiological Functions. Boca Raton, CRC Press Inc., 375 pp.

    Google Scholar 

  • Vindimian, E. & J. Garric, 1989. Freshwater fish cytochrome P450-Dependent enzymatic activities: A chemical pollution indicator. Ecotox. Environ. Saf. 18: 277–285.

    Google Scholar 

  • Welsh, S. O., 1979. The protective effect of vitamin E and N, N′-diphenyl p-pheylenediamine (DPPD) against methyl mercury toxicity in the rat. J. Nutr. 109: 1673–1681.

    Google Scholar 

  • Widdows, J. & J. M. Shick, 1985. Physiological responses of Mytilus edulis and Cardium edule to aerial exposure. Mar. Biol. 85: 217–232.

    Google Scholar 

  • Winston, G. W., 1991, Oxidants and antioxidants in aquatic animals. Comp. Biochem. Physiol. 100C: 173–176.

    Google Scholar 

  • Winston, G. W. & R. T. Di-Giulio, 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19: 137–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellerin-Massicotte, J. Oxidative processes as indicators of chemical stress in marine bivalves. J Aquat Ecosyst Stress Recov 3, 101–111 (1994). https://doi.org/10.1007/BF00042940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042940

Key words

Navigation