Skip to main content
Log in

Weight function for a single edge cracked geometry with clamped ends

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A single edge cracked geometry with clamped ends is well suited for fracture toughness and fatigue crack growth testing of composites and thin materials. Analysis of fiber bridging phenomenon in the composites and determination of stress intensity factors due to non-uniform stress distributions such as residual and thermal stresses generally require the use of a weight function. This paper describes the development and verification of a weight function for the single edge cracked geometry with clamped ends. Finite element analyses were conducted to determine the stress intensity factors (K) and crack opening displacements (COD) due to different types of stress distributions. The weight function was developed using the K and COD solution for a constant stress distribution. K and COD predicted using this weight function correlated well with the finite element results for non-uniform crack surface stress distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Gambone, Fatigue and Fracture of Titanium Aluminides, WL-TR-89–4145, Materials Laboratory, Wright-Patterson AFB, Ohio 45433–6533, USA (1990).

    Google Scholar 

  2. R. John, S.G. Kaldon and N.E. Ashbaugh, Applicability of Fiber Bridging Models to Describe Crack Growth in Unidirectional Titanium Matrix Composites, UDR-TR-94–53, University of Dayton Research Institute, Dayton, Ohio, USA (1994).

    Google Scholar 

  3. D. Blatt, R. John and D. Coker, Engineering Fracture Mechanics 47 (1994) 521–532.

    Article  Google Scholar 

  4. V.A. Kramb, R. John and N.E. Ashbaugh, in Ninth Annual Technical Conference, American Society for Composites, Technomic Publishing Co., Inc., Lancaster, Pennsylvania 17604, USA (1994).

    Google Scholar 

  5. D.O. Harris, Journal of Basic Engineering 89 (1969) 49–54.

    Article  Google Scholar 

  6. O.L. Bowie, C.L. Freese and D.M. Neal, Journal of Applied Mechanics 40 (1973) 767–772.

    Article  Google Scholar 

  7. N. Marchand, D.M. Parks and R.M. Pelloux, International Journal of Fracture 31 (1986) 53–65.

    Article  Google Scholar 

  8. J. Ahmad, V. Papaspyropoulos and A.T. Hopper, Engineering Fracture Mechanics 38 (1991) 283–294.

    Article  Google Scholar 

  9. T.X. Dao and S.R. Mettu, Analysis of an Edge-Cracked Specimen Subjected to Rotationally-Constrained End Displacement, NASA JSC 32171 (1991).

  10. H.F. Bueckner, Z. Angew. Math. Mech. 50 (1970) 529–546.

    Google Scholar 

  11. J.R Rice, International Journal of Solids and Structures 8 (1972) 751–758.

    Article  Google Scholar 

  12. A.C. Kaya and F. Erdogan, International Journal of Fracture 16 (1980) 171–190.

    Article  Google Scholar 

  13. H.J. Petroski and J.D. Achenbach, Engineering Fracture Mechanics 10 (1978) 257–266.

    Article  Google Scholar 

  14. R.P. Ojdrovic and H.J. Petroski, Engineering Fracture Mechanics 39 (1991) 105–111.

    Article  Google Scholar 

  15. T. Fett, International Journal of Fracture 43 (1990) 195–211.

    Article  Google Scholar 

  16. G.S. Wang and A.F. Blom, Engineering Fracture Mechanics 44 (1993) 307–326.

    Article  Google Scholar 

  17. X.-R. Wu and A.J. Carlsson, Weight Functions and Stress Intensity Factor Solutions, Pergamon Press, Inc., Elmsford, New York, USA (1991).

    Google Scholar 

  18. G. Shen and G. Glinka, Theoretical and Applied Fracture Mechanics 15 (1991) 237–245.

    Article  Google Scholar 

  19. T. Fett, Engineering Fracture Mechanics 42 (1992) 435–444.

    Article  Google Scholar 

  20. R. John and S.G. Kaldon, Engineering Fracture Mechanics, submitted for publication (1995)

  21. ADINA-A Finite Element Program for Automatic Dynamic Incremental Nonlinear Analysis, Report ARD 89-1, ADINA R & D, Inc., Watertown, Massachussets, USA (1989).

  22. R.S. Barsoum, International Journal of Numerical Methods in Engineering 10 (1976) 25–37.

    Article  Google Scholar 

  23. H. Tada, P.C. Paris, and G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, St. Louis, Missouri, USA (1985).

    Google Scholar 

  24. A.R. Ingraffea and C. Manu, International Journal of Numerical Methods in Engineering 15 (1980) 1427–1445.

    Article  Google Scholar 

  25. N.A.B. Yehia and M.S. Shephard, International Journal of Numerical Methods in Engineering 21 (1985) 1911–1924.

    Article  Google Scholar 

  26. T. Fett, Engineering Fracture Mechanics 46 (1993) 655–662.

    Article  Google Scholar 

  27. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications Inc., New York, New York, USA (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, R., Kaldon, S.G., Johnson, D.A. et al. Weight function for a single edge cracked geometry with clamped ends. Int J Fract 72, 145–158 (1995). https://doi.org/10.1007/BF00042825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042825

Keywords

Navigation