Skip to main content
Log in

The effects of bioturbation on particle redistribution in Mediterranean coastal sediment. Preliminary results

  • Part Three: Role of Organism
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In order to quantify bioturbation processes in a coastal Mediterranean ecosystem, experiments were performed to determine sediment mixing rates resulting from macrobenthos activity. Particle flux was measured in situ for 22 days using luminophores, which are colored sediment particles with sizes ranging from 10 to 200 µm.

In sediment depths from 0–5 cm, particle mixing was intensive due to high macrobenthos abundance. A small quantity of luminophores was transported down to a depth of 14 ± 2 cm, where the macrofauna was represented principally by Polychetes. In a control experimental structure — without benthic fauna — no transfer of luminophores into the sediment was recorded.

Sediment particle mixing measured in the ecosystem studied is intensive, and is the result of high macrobenthos activity. Different mixing modes occur with scales and rates depending on the organisms present. The luminophore profile resulting from bioturbation processes is explained by an intensive bioadvection sediment mixing added to a biodiffusive mixing with an order of magnitude of 10−6 cm2 s−1. Tracer accumulations between 1 and 2 ± 1 cm and between 4 and 5 ± 1 cm are attributed to bioadvection activity of two or more distinct populations. Studies over a larger time scale have been undertaken to monitor developments in the observed subsurface maxima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, R. C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: P. L. Mc Call & M. J. S. Tevesz (eds), Animal-sediment relations. Plenum Press; New York: 53–102.

    Google Scholar 

  • Aller, R. C. & J. K. Cochran, 1976. 234Th/238U disequilibrium in nearshore sediment: particle reworking and diagenetic time scales. Earth Planet. Sci. Lett. 29: 37–50.

    Google Scholar 

  • Aller, R. C. & D. J. De Master, 1984. Estimates of particle flux and reworking at the deep-sea floor using 234Th/238U disequilibrium. Earth Planet. Sci. Lett. 63: 308–318.

    Google Scholar 

  • Benninger, L. K., R. C. Aller, J. K. Cochran & K. K. Turekian, 1979. Effects of biological sediment mixing on the 210Pb chronology and trace metal distribution in a Long Island Sound sediment core. Earth Planet. Sci. Lett. 43: 241–259.

    Google Scholar 

  • Bianchi, T. S., 1988. Feeding ecology of subsurface deposit-feeder Leitoscoloplos fragilis Verrill. I. Mechanisms affecting particle availability on intertidal sandflat. J. exp. mar. Biol. Ecol. 115: 79–97.

    Google Scholar 

  • Boudreau, B. P., 1986. Mathematics of tracer mixing in sediments: I. Spatially-dependent, diffusive mixing. II. Nonlocal mixing and biological conveyor-belt phenomena. Am. J. Sci. 286: 199–238.

    Google Scholar 

  • Cochran, J. K., 1985. Particle mixing rates in sediments of the eastern equatorial Pacific. Evidence from 210Pb, 239, 240Pu, and 137Cs distribution at MANOP sites. Geochim. Cosmochim. Acta 49: 1195–1210.

    Google Scholar 

  • De Master, D. J. & J. K. Cochran, 1982. Particle mixing rates in deep-sea sediments determined from 210Pb and 32Si profiles. Earth Planet. Sci. Lett. 61: 257–271.

    Google Scholar 

  • De Master, D. J., B. A. Mc Kee, C. A. Nittrouer, D. C. Brewster & P. E. Biscaye, 1985. Rates of sediment reworking at the HEBBLE site based on measurements of 234Th, 137Cs and 210Pb. Mar. Geol. 66: 133–148.

    Google Scholar 

  • Fauchald, K. & P. A. Jumars, 1979. The diet of worms: a study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev. 17: 193–283.

    Google Scholar 

  • Fisher, J. B., P. L. Mc Call & J. A. Robbins, 1980. Vertical mixing of lake sediments by tubificid oligochaetes. J. geophys. Res. 85: 3997–4006.

    Google Scholar 

  • Gardner, L. R., P. Sharma & W. S. Moore, 1987. A regeneration model for the effect of bioturbation by fiddler crabs on 210Pb profiles in salt marsh sediments. J. envir. Radioactivity 5: 25–36.

    Google Scholar 

  • Goldberg, E. D. & M. Koide, 1962. Geochronological studies of deep-sea sediments by the ionium-thorium method. Geochim. Cosmochim. Acta 26: 417–450.

    Google Scholar 

  • Guinasso, N. L. & D. R. Schink, 1975. Quantitative estimates of biological mixing rates in abyssal sediments. J. geophys. Res. 80: 3032–3043.

    Google Scholar 

  • Imboden, D. M. & M. Stiller, 1982. The influence of radon diffusion on the 210Pb distribution in sediments. J. geophys. Res. 87: 557–565.

    Google Scholar 

  • Kershaw, P. J., 1985. 14C and 210Pb in NE Atlantic sediments: Evidence of biological reworking in the context of radioactive waste disposal. J. envir. Radioactivity 2: 115–134.

    Google Scholar 

  • Lynch, D. R. & C. B. Officer, 1984. Nonlinear parameter estimation for sediment cores. Mar. Geol. 44: 203–225.

    Google Scholar 

  • Mahaut, M. L. & G. Graf, 1987. A luminophore tracer technique for bioturbation studies. Oceanol. Acta. 10: 323–328.

    Google Scholar 

  • Matissof, G., 1982. Mathematical models of bioturbation. In: P. L. Mc Call & M. J. S. Tevesz (eds), Animal-sediment relations. Plenum Press, New York: 289–330.

    Google Scholar 

  • Mauviel, A., H. V. Nguyen, R. Chesselet, M. Sibuet, Y. Yokoyama & G. Auffret, 1982. Etude des variations des taux de bioturbations par la spectrométrie gamma non destructive (GeHP), dans trois zones sédimentaires de l'Atlantique Nord, á 2000 m et á plus de 4000 m de profondeur. Bull. Inst. Géol. d'Aquitaine, Bordeaux. 31: 257–275.

    Google Scholar 

  • Pérès, J. M. & J. Picard, 1964. Nouveau manuel de bionomie benthique de la mer Méditerranée. Rec. Trav. Stn mar. Endoume 81 (47): 137 p.

    Google Scholar 

  • Rhoads, D. C., 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. Ann. Rev. 12: 263–300.

    Google Scholar 

  • Rice, D. L., 1986. Early diagenesis in bioadvective sediments: Relationships between the diagenesis of beryllium-7, sediment reworking rates, and the abundance of conveyor-belt deposit-feeders. J. mar. Res. 44: 149–184.

    Google Scholar 

  • Robbin, J. A., P. L. Mc Call, J. B. Fisher & J. R. Krezoski, 1979. Effect of deposit feeders on migration of 137Cs in lake sediments. Earth Planet. Sci. Lett. 42: 277–287.

    Google Scholar 

  • Sharma, P., L. R. Gardner, W. S. Moore & M. S. Bollinger, 1987. Sedimentation and bioturbation in a salt marsh as revealed by 210Pb, 137Cs, and 7Be Studies. Limnol. Oceanogr. 32: 313–326.

    Google Scholar 

  • Smith, J. N., B. P. Boudreau & V. Noshkin, 1987. Plutonium and 210Pb distributions in northeast Atlantic sediments: subsurface anomalies caused by non-local mixing. Earth Planet. Sci. Lett. 81: 15–28.

    Google Scholar 

  • Stora, G., 1982. Recherches de bionomie descriptive et experimentale dans quelques biotopes littoraux soumis à des variations naturelles ou artificielles des conditions du milieu. Thèse Doct. ès Sci. Univ. Aix-Marseille II, 430 pp.

  • Turekian, K. K., J. K. Cochran & D. J. De Masters, 1978. Bioturbation in deep sea deposits. Rates and consequences. Oceanus 21: 34–41.

    Google Scholar 

  • Yokoyama, Y., H. V. Nguyen, C. E. Lambert & R. Chesselet, 1985. Etude de la bioturbation dans les sédiments superficiels de la Mediterranée occidentale par le traceur 210Pb. Oceanol. Acta 8: 285–291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerino, M. The effects of bioturbation on particle redistribution in Mediterranean coastal sediment. Preliminary results. Hydrobiologia 207, 251–258 (1990). https://doi.org/10.1007/BF00041463

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041463

Key words

Navigation