Skip to main content
Log in

Phosphorus mobility in interstitial waters of sediments in Lake Kinneret, Israel

  • Part Two: Water Sediment-Interaction
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Monthly samples of sediment cores from maximum depth (∼ 42 m) in Lake Kinneret were taken from May 1988 until January 1989. The chemical composition of the interstitial and overlying water was investigated with respect to phosphate, Fe2+, Fe3+, Ca2+, alkalinity and electric conductivity. pH, pH2S and pe (electron-activity) were measured by microelectrodes inserted directly into the sediment core immediately after sampling.

Ion activity products of vivianite, siderite, ironsulfides, Ca-P complexes and Ca-P solid phases were calculated; in addition, Ca/P ratios for the overlying and pore water were obtained by using the potential diagram technique. Despite the fact that anoxic conditions prevail for most of the year, no control of phosphate solubility by a Fe-P relationship could be found. Determination of IAPs, together with calculated molar Ca/P-ratios, suggests that hydroxyapatite as well as surface complexes like dicalciumphosphate are the solubility-controlling species in pore water. For the overlying water a Ca3(HCO3)3PO4 surface complex is assumed to fix the phosphorus, accompanied by a subsequent transformation of the bound P into apatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.P.H.A., 1981. Standard Methods for the Examination of Water and Wastewater. 15th Edition, Washington D.C., 1134 pp.

  • Avnimelech, Y., 1980. Calcium-carbonate-phosphate surface complex in calcareous systems. Nature 290: 255–257.

    Google Scholar 

  • Avnimelech, Y., 1983. Phosphorus and calcium carbonate solubilities in lake Kinneret. Limnol. Oceanogr. 28: 640–645.

    Google Scholar 

  • Avnimelech, Y. & E. C. Moreno, 1973. Solubility and surface properties of finely divided hydroxyapatite. Journal of Research of the National Bureau of Standards (U.S.) 77a Phys. and Chem. 1: 149–155.

    Google Scholar 

  • Berner, R. A. & J. W. Morse, 1974. Dissolution of calcium carbonate in sea water: IV. Theory of calcite dissolution. Am. J. Sci. 27: 108–134.

    Google Scholar 

  • Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.

    Google Scholar 

  • Cole, C. V., S. R. Olsen & C. O. Scott, 1953. The nature of phosphate sorption by calcium carbonate. Soil Sci. Am. Proc. 17: 352–356.

    Google Scholar 

  • Cole, C. V. & S. R. Olsen, 1959. Phosphorus solubility in calcareous soils: I. Dicalciumphosphate activities in equilibrium solutions. Soil Sci. Soc. Proc. 159: 116–118.

    Google Scholar 

  • Davison, W., 1980. A critical comparison of the measured solubilities of ferrous sulphide in natural waters. Geochim. Cosmochim. Acta. 44: 803–808.

    Google Scholar 

  • Duff, E. J., 1971. Orthophosphates Part IV. J. Chem. Soc. A. 1971: 921–926.

  • Einsele, W., 1936. Über die Beziehung des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 664–686.

    Google Scholar 

  • Einsele, W., 1937. Physikalisch-chemische Betrachtung einiger Probleme des limnischen Mangan- und Eisenkreislaufs. Verh. int. Ver. Limnol. 5: 69–84.

    Google Scholar 

  • Einsele, W., 1938. Über chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemischen und limnogeologischen Gesichtspunkten. Arch. Hydrobiol. 33: 361–387.

    Google Scholar 

  • Einsele, W. & H. Vetter, 1938. Untersuchungen über die Entwicklung der physikalischen und chemischen Verhältnisse im Jahreszyklus in einem mäßig eutrophen See (Schleinsee bei Langenargen). Int. Rev. Hydrobiol. 36: 285–324.

    Google Scholar 

  • Emerson, S., 1976. Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. Geochim. Cosmochim. Acta 40: 925–924.

    Google Scholar 

  • Emerson, S. & G. Widmer, 1978. Early diagenesis in anaerobic lake sediments — 2. Themodynamic and kinetic factors controlling the formation of iron phosphate. Geochim. Cosmochim. Acta 42: 1307–1316.

    Google Scholar 

  • Enell, M. & S. Löfgren, 1988. Phosphorus in interstitial water: methods and dynamics. Hydrobiologia 170: 103–132.

    Google Scholar 

  • Gächter, R., J. S. Meyer & A. Mares, 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33: 1542–1558.

    Google Scholar 

  • Golterman, H. L. & M. L. Meyer, 1985. The geochemistry of two hard water rivers, the Rhine and the Rhone, Part 4: The determination of the solubility product of hydroxyapatite. Hydrobiologia 126: 25–29.

    Google Scholar 

  • Gregory, T. M., E. C. Moreno & W. E. Brown, 1970. Solubility of CaHPO4 *2H2O in the system Ca(OH)2-H3PO4--H2O at 5, 15, 25, and 37.5 °C. Journal of Research of the National Bureau of Standards — A. Physics and Chemistry 74: 461–475.

    Google Scholar 

  • Griffin, R. A. & J. J. Jurinak, 1973. Estimation of activity coefficients from electrical conductivity of natural aquatic systems and soil extracts. Soil Sci. 116: 26–30.

    Google Scholar 

  • Krom, M. D. & R. A. Berner, 1980a. The diffusion coefficient of sulfate, ammonium and phosphate ions in anoxic marine sediments. Limnol. Oceanogr. 25: 327–337.

    Google Scholar 

  • Krom, M. D. & R. A. Berner, 1980b. Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25: 797–806.

    Google Scholar 

  • Landing, W. M. & S. Westerlund, 1988. The solution chemistry of iron (II) in Framvaren Fjord. Mar. Chem. 23: 329–343.

    Google Scholar 

  • Lijklema, L., 1977. The role of iron in he exchange of phosphate between water and sediments. — In H. L. Golterman (ed.) Interactions between sediments and fresh water. Dr. W. Junk B.V., The Hague: 313–317.

    Google Scholar 

  • MacGregor, J. & W. E. Brown, 1965. Blood: Bone equilibrium in calcium homoeostasis. Nature 4969: 359–361.

    Google Scholar 

  • Matisoff, G., A. H. Lindsay, S. Matis & F. M. Soster, 1980. Trace metal mineral equilibria in Lake Erie sediments. J. Great Lakes Res. 6: 353–366.

    Google Scholar 

  • Moreno, E. C., W. E. Brown & O. Osborn, 1960. Stability of dicalcium phosphate dihydrate in aqueous solutions and solubility of octacalciumphosphate. Soil Sci. Am. Proc. 24: 94–98.

    Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. I. J. Ecol. 29: 280–329.

    Google Scholar 

  • Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. II. J. Ecol. 30: 147–201.

    Google Scholar 

  • Murray, J. W., V. Grundmanis & W. M. Smethie Jr., 1978. Interstitial water chemistry in the sediments of Saanich Inlet. Geochim. Cosmochim. Acta 42: 1011–1026.

    Google Scholar 

  • Nriagu, J. O., 1972. Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O. Geochim. Cosmochim. Acta 36: 454–470.

    Google Scholar 

  • Ohle, W., 1937. Kolloidgele als Nährstoffregulanten der Gewässer. Naturwissenschaften 25: 471–474.

    Google Scholar 

  • Ohle, W., 1938. Die Bedeutung der Austauschvorgänge zwischen Schlamm und Wasser für den Stoffkreislauf der Gewässer. Vom Wasser XIII: 87–97.

    Google Scholar 

  • Peiffer, S., 1989. Biogeochemische Regulation der Spurenmetallöslichkeit während der anaeroben Zersetzung fester kommunaler Abfälle. Ph.D. thesis, Univ. Bayreuth, Dept. Hydrology: 197 pp.

  • Plummer, L. N. & E. Busenberg, 1982. The solubilities of calcite, aragonite and vaterite in CO2|H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3|CO2|H2O. Geochim. Cosmochim. Acta 46: 1011–1040.

    Google Scholar 

  • Reeburgh, W. S., 1976. An improved interstitial water sampler. Limnol. Oceanogr. 12: 163–165.

    Google Scholar 

  • Serruya, C., 1976. Rates of sedimentation in Lake Kinneret. — In H. L. Golterman (ed.) Interactions between sediments and fresh water. Dr. W. Junk B.V., The Hague: 48–56.

    Google Scholar 

  • Serruya, C., 1978. Lake Kinneret. Dr. W. Junk B.V., The Hague, 501 pp.

    Google Scholar 

  • Serruya, C., M. Edelstein, U. Pollingher & S. Serruya, 1974. Lake Kinneret sediments: Nutrient composition of the pore water and mud water exchanges. Limnol. Oceanogr. 19: 489–507.

    Google Scholar 

  • Smith, A. N., A. M. Posner & J. P. Quirk, 1974. Incongruent dissolution and surface complexes of hydroxyapatite. J. Colloid Interface Sci. 48: 442–449.

    Google Scholar 

  • Stumm, W. & J. O. Leckie, 1971. Phosphate exchange with sediments; its role in the productivity of surface waters. Adv. Water Poll. Res. 5; 1970, III-26: 1–16.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1981. Aquatic chemistry. An introduction emphasizing chemical equilibria in natural waters. John Wiley & Sons, New York: 780 pp.

    Google Scholar 

  • Suess, E., 1979. Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochim. Cosmochim. Acta 43: 339–352.

    Google Scholar 

  • Tessenow, U., T. Frevert, W. Hofgärtner & A. Moser, 1977. Ein simultan schließender Serienwasserschöpfer für Sedimentkontaktwasser mit fotoelektrischer Selbstauslösung und fakultativem Sedimentstecher. Arch. Hydrobiol. Suppl. 48: 438–452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staudinger, B., Peiffer, S., Avnimelech, Y. et al. Phosphorus mobility in interstitial waters of sediments in Lake Kinneret, Israel. Hydrobiologia 207, 167–177 (1990). https://doi.org/10.1007/BF00041454

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041454

Key words

Navigation