Skip to main content
Log in

Effect of mixed mode I and II loading on the fracture surface of polymethyl methacrylate (PMMA)

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper studies conducted on Polymethyl methacrylate (PMMA) under combined bending and shear loading are described. A strong dependency of fracture surface features on the mixed mode stress state is observed. Close to pure mode I, the fracture surface is ‘mirror-like’ in appearance. With increasing mode II component the fracture surface becomes ‘misty’ and parabolic markings appear on the fracture surface. These observations indicate that the level of stress ahead of the crack tip increases with increasing mode II component. The mixed mode specimens are also observed to fracture at much higher stresses than the pure mode I specimen, contrary to the predictions of the fracture criteria based on linear elastic fracture mechanics (LEFM). The fracture surface features and the higher stresses at fracture in the mixed mode specimens are explained in terms of the increase in stiffness (which has been related to an increase in the effective stress intensity factor per unit opening displacement) with the introduction of a mode II component and the geometry of the 3-dimensional crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Higuchi, Reports of Research, Institute for Applied Mechanics, Kyushu University 6 (1958) 173–179.

    Google Scholar 

  2. J.P. Berry, Journal of Polymer Science 50 (1961) 107–115.

    Google Scholar 

  3. R.P. Kambour, Journal of Polymer Science, Macromolecular Reviews 7 (1973) 1–154.

    Google Scholar 

  4. P. Beardmore and J. Fellers, Materials Science and Engineering 5 (1969/70) 120–125.

    Google Scholar 

  5. P.D. Washabaugh and W.G. Knauss, International Journal of Fracture 59 (1993) 189–197.

    Google Scholar 

  6. W. Döll, in Fractography and Failure Mechanisms of Polymers and Composites, A.C. Roulin-Moloney (ed.), Elsevier (1989) 387–429.

  7. F. Erdogan and G.C. Sih, Transactions of ASME, Journal of Basic Engineering 85 (1963) 519–527.

    Google Scholar 

  8. G.C. Sih, Engineering Fracture Mechanics 5 (1973) 365–377.

    Google Scholar 

  9. M.A. Hussain, S.L. Pu and J. Underwood, ASTM STP 560 (1974) 2–28.

  10. T.M. Maccagno and J.F. Knott, Engineering Fracture Mechanics 34 (1989) 65–86.

    Google Scholar 

  11. D. Bhattacharjee and J.F. Knott in Mixed-Mode Fatigue and Fracture, ESIS14, K.J. Miller and H.P. Rossmanith (eds) MEP, London (1993) 99–109.

    Google Scholar 

  12. S. Suresh, C.F. Shih, A. Morrone and N.P. O'Dowd, Journal of the American Ceramic Society 73 (1990) 1257–1267.

    Google Scholar 

  13. G.P. Marshall and J.G. Williams, Journal of Materials Science 8 (1973) 138.

    Google Scholar 

  14. R.D. Margolis, R.W. Dunlap and H. Markowitz, ASTM STP 601 (1976) 391–408.

  15. B.W. Guest and B.L. Karihaloo, Journal of Materials Science Letters 4 (1985) 1285–1289.

    Google Scholar 

  16. T.M. Maccagno and J.F. Knott, Engineering Fracture Mechanics 38 (1991) 111–128.

    Google Scholar 

  17. C.F. Shih, ASTM STP 560 (1974) 187–210.

  18. J.W. Hutchinson, Journal of Mechanics and Physics of Solids 16 (1968) 13–31.

    Google Scholar 

  19. J.R. Rice and G.F. Rosengren, Journal of Mechanics and Physics of Solids 16 (1968) 1–12.

    Google Scholar 

  20. J.C.W. Davenport and D.J. Smith, Fatigue and Fracture of Engineering Materials and Structures 16 (1993) 1125–1133.

    Google Scholar 

  21. J.G. Williams and G.P. Marshall, Proceedings of the Royal Society 342 A (1975) 55–77.

    Google Scholar 

  22. B. Lawn, Fracture of Brittle Solids, 2nd edn., Cambridge University Press, Cambridge (1993).

    Google Scholar 

  23. D. Hull, International Journal of Fracture 62 (1993) 119–138.

    Google Scholar 

  24. A. Carpenteri, S. Valente, G. Ferrara and G. Melchiorri, in Mixed-Mode Fatigue and Fracture, ESIS 14, H.P. Rossmanith and K.J. Miller (eds), MEP, London (1993) 171–183.

    Google Scholar 

  25. M. Bevis and D. Hull, Journal of Materials Science 5 (1970) 983–987.

    Google Scholar 

  26. Y. Ueda, K. Ikeda, T. Yao and M. Aoki, Engineering Fracture Mechanics 18 (1983) 1131–1158.

    Google Scholar 

  27. S.K. Maiti and R.A. Smith, Journal of Mechanics and Physics of Solids 31 (1983) 389–403.

    Google Scholar 

  28. R.V. Mahajan and K. Ravi-Chandar, International Journal of Fracture 41 (1989) 235–252.

    Google Scholar 

  29. H.-A. Richard, Bruchvorhersagen bei überlagerter Normal-und Schubbeanspruchung von Rissen, in VDI-Forshcungshaft 631, VDI Verlag, Dusseldorf (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, D., Knott, J.F. Effect of mixed mode I and II loading on the fracture surface of polymethyl methacrylate (PMMA). Int J Fract 72, 359–381 (1995). https://doi.org/10.1007/BF00040373

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040373

Keywords

Navigation