Skip to main content
Log in

Recent progress in the use of processed microalgae in aquaculture

  • Cultivation, tissue culture and strain selection
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mass-cultured algal biomass has been tested as a food source for a number of aquaculture animals because of its low cost and convenience. This paper reviews the results of nutritional studies on processed microalgae with respect to mollusc, crustacean, rotifer and fish culture. Research using species of Spirulina, Chlorella, Scenedesmus and other mass-produced algae indicates that microalgae can be an effective dietary component provided that processing, diet formulation and presentation requirements are met. Processed microalgae can be used to correct specific dietary deficiencies in artificial diets. Our research found that the growth and pigmentation of marron, Cherax tenuimanus (Decapoda, Crustacea), can be significantly enhanced by the incorporation of Dunaliella salina in its artificial diet. Likewise, rainbow trout, Oncorhynchus mykiss, were pigmented by Haematococcus pluvialis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atack, T. H. & A. J. Matty,1978. The evaluation of single cell proteins in the diet of rainbow trout. II. The determination of net protein utilization, biological values and true digestibility. Symp. Fin-Fish Nutr. and Feed Technol., Hamburg F.R.G. 20 June 1978. E.I.F.A.C./78/Symp. E/59 FAO, Rome, FAO Access No 41435, 21 pp.

  • Atack, T. H., K. Jauncey & A. J. Matty, 1979. Utilization of some single cell proteins by fingerling mirror carp (Cyprinus carpio). Aquaculture 18: 337–348.

    Google Scholar 

  • Becker, E. W., 1986. Nutritional properties of microalgae: potential and constraints. In A. Richmond (ed.), CRC Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, Florida: 339–419.

    Google Scholar 

  • Ben-Amotz, A. & H. Rosenthal, 1981. Cryopreservation of marine unicellular algae and early life stages of fish for use in mariculture. In H. Rosenthal & O. H. Oren (eds), European Mariculture Soc. Special Publication No. 6: 149–162.

  • Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-algal Biotechnology. Cambridge University Press, Cambridge, 477 pp.

    Google Scholar 

  • Brown, A., 1972. Experimental techniques for preserving diatoms used as food for larval Penaeus aztecus. Proc. Natn. Shellfisheries Ass. 62: 21–26.

    Google Scholar 

  • Chanley, P. & R. F. Normandin, 1967. Use of artificial foods for larvae of the hard clam Mercenaria mercenaria (L.). Proc. Natn. Shellfisheries Ass. 57: 31–37.

    Google Scholar 

  • Choubert, G., 1979. Tentative utilization of spirulin algae as a source of carotenoid pigments for rainbow trout. Aquaculture 18: 135–143.

    Google Scholar 

  • Craik, J. C. A., 1985. Egg quality and egg pigment content in salmonid fishes. Aquaculture 47: 61–88.

    Google Scholar 

  • D'Abramo, L. R., C. E. Bordner, D. E. Conklin & N. A. Baum, 1981. Successful artificial diets for the culture of juvenile lobsters. Proc. World Maricult. Soc. 12: 325.

    Google Scholar 

  • De Pauw, N., J. Verboven & C. Claus, 1983. Large-scale microalgae production for nursery rearing of marine bivalves. Aquaculture Engineering 2: 27–47.

    Google Scholar 

  • De Pauw, N., J. Morales & G. Persoone, 1984. Mass culture of microalgae in aquaculture systems: progress and constraints. Proc. int. Seaweed Symp. 11: 121–134.

    Google Scholar 

  • Dickson, M. W., 1987. Pilot scale cultivation of microalgae as an ingredient for fish feeds in Zambia. Aquacult. Fish. Manag. 18: 109–120.

    Google Scholar 

  • Droop, M. R., 1954. Conditions governing haemotochrome formation and loss in the alga Haematococcus pluvialis. Flowtow. Arch. Mikrobiol. 20: 391–397.

    Google Scholar 

  • Droop, M. R., 1955. Some factors governing encystment in Haematococcus pluvialis. Arch. Mikrobiol. 21: 267–272.

    Google Scholar 

  • Fox, J. M., 1983. Intensive algal culture techniques. In J. P. McVey (ed.), CRC Handbook of Mariculture: Crustacean Aquaculture. CRC Press, Boca Raton, Florida: 15–41.

    Google Scholar 

  • Gatesoupe, F. J. & P. Luquet, 1981. Practical diet for mass culture of the rotifer Branchionus plicatilis: application to larval rearing of the sea bass, Dicentrarchus labrax. Aquaculture 22: 149–163.

    Google Scholar 

  • Gatesoupe, F. J. & J. Robin, 1981. Commercial single cell proteins either as sole food source or in formulated diets for intensive and continuous production of rotifer (Branchionus plicatilis). Aquaculture 25: 1–15.

    Google Scholar 

  • Goodwin, T. W. & M. Jamikorn, 1954. Studies in carotenogenesis. II. Carotenoid synthesis in the alga Haematococcus pluvialis. Biochem. J. 57: 376–381.

    Google Scholar 

  • Griffith, G. W., M. A. Murphy-Kenslow & L. A. Ross, 1973. A mass culture method for Tetraselmis sp., a promising food for larval crustaceans. Proc. World Maricult. Soc. 4: 289.

    Google Scholar 

  • Hidu, H. & R. Ukeles, 1962. Dried unicellular algae as food for larvae of the hard shell clam, Mercenaria mercenaria. Proc. Natn. Shellfisheries. Ass. 53: 85–101.

    Google Scholar 

  • Hirayama, K. & K. Nakamura, 1976. Fundamental studies in the physiology of rotifers in mass culture — V. Dry chlorella powder as food for rotifers. Aquaculture 8: 301–307.

    Google Scholar 

  • Holliday, J. E., 1986. International developments in oyster hatchery technology. Dept. of Agricult., New South Wales, Division of Fisheries Misc. Bulletin 1, ISSN 0815-8819, 123 pp.

  • Johnson, D. A., 1980. Evaluation of various diets for optimal growth and survival of selected life stages of Artemia. In G. Persoone, P. Sorgeloos, O. Roels & E. Jaspers (eds), The Brine Shrimp Artemia, Vol. 3. Ecology, Culturing, Use in Aquaculture. Universa Press, Wetteren, Belgium: 185–192.

    Google Scholar 

  • Johnson, E. A., D. E. Conklin & M. J. Lewis, 1977. Phaflia rhodomyza as a dietary pigment source for salmonids and crustaceans. J. Fish. Res. Bd Can. 34: 2417–2421.

    Google Scholar 

  • Kesamaru, K. & I. Miyazono, 1978a. Studies on the nutrition of Tilapia nilotica. I. The growth of T. nilotica on diets containing various dietary protein. Miyazaki Daigaku Nogakubu Kenkyu Hokoku 25: 341–349 (in Japanese).

    Google Scholar 

  • Kesamaru, K. & I. Miyazono, 1978b. Studies on the nutrition of Tilapia nilotica. II. The nutritive values of diets containing various dietary protein. Miyazaki Daigaku Nogakubu Kenkyu Hokoku 25: 351–359 (in Japanese).

    Google Scholar 

  • Liao I. C., H. M. Su & J. H. Lin, 1983. Larval foods for penaeid prawns. In J. P. McVey (ed.), CRC Handbook of Mariculture: Crustacean Aquaculture. CRC Press, Boca Raton, Florida: 43–69.

    Google Scholar 

  • Lim, C., P. Suraniranat & R. Platon, 1978. A preliminary study on the evaluation of casein, shrimp meal, squid meal and Spirulina as protein sources of Penaeus monodon (fabricus) postlarvae. Q. Res. Ep. — Southeast Asian Fish. Dev. Cent., Aquacul. Dept. 2(2): 13–18.

    Google Scholar 

  • Lim, C., P. Suraniranat & R. Platon, 1979. Evaluation of various protein sources for Penaeus monodon postlarvae. Kalikasan, Philipp. J. Biol. 8(1): 29–36.

    Google Scholar 

  • Masson, M., 1977. Observations on the feeding of larvae of Mytilus galloprovincialis with inert foods. Mar. Biol. 40: 157–164.

    Google Scholar 

  • Matsuno, J., S. Nagata, M. Iwahashi, T. Koike & M. Okada, 1979. Intensification of color of fancy red carp with zeaxanthin and mixoxanthophyll, major carotenoid constituents of Spirulina. Bull. Jap. Soc. Sci. Fish. 45: 627–632 (in Japanese).

    Google Scholar 

  • Matsuno, T., M. Katsuyama, M. Iwahashi, T. Koike & M. Okada, 1980. Intensification of color of red tilapia with lutein, rhodoxanthin and Spirulina. Bull. Jap. Soc. Sci. Fish. 46: 479–482 (in Japanese).

    Google Scholar 

  • Matty, A. & P. Smith, 1978. Evaluation of a yeast, bacterium and an alga as a protein source for rainbow trout. Part I. Effect of protein level on growth, growth conversion efficiency and protein conversion efficiency. Aquaculture 14: 235–246.

    Google Scholar 

  • Meske, C. & E. Pfeffer, 1977. Untersuchungen über mikroalgen. Hefe oder casein als komponenten eines fischmehlfreien trockenfutters für karpfun. Z. Tierphysiol. Tierernahr. Futtermittelkd. 38: 177–185.

    Google Scholar 

  • Meske, C. & E. Pfeffer, 1978. Growth experiments with carp and grass carp. Arch. Hydrobiol. 11: 98–107.

    Google Scholar 

  • Millamena, O. & E. J. Aujero, 1978. Preserved algae as food for Penaeus monodon larvae. Q. Res. Rep. Southeast Asian Fish. Dev. Cent. Aquacult. Dept. 2(4): 15–16.

    Google Scholar 

  • Mock, C. R., D. B. Revera & C. T. Fontaine, 1980. The larval culture of Penaeus stylorostris using modifications of the Galveston Laboratory Technique. Proc. World Maricult. Soc. 11: 102–117.

    Google Scholar 

  • Mohn, F. H., 1980. Experiences and strategies in the recovery of biomass from mass culture of microalgae. In G. Shelef & C. J. Soeder (eds), Algae Biomass. Elsevier/North-Holland, Amsterdam: 547–572.

    Google Scholar 

  • Mohn, F. H., 1988. Harvesting of micro-algal biomass. In M. A. Borowitzka & L. J. Borowitzka (eds), Micro-algal Biotechnology. Cambridge University Press, Cambridge: 395–414.

    Google Scholar 

  • Morrissy, N. A., 1984. Assessment of artificial feeds for battery culture of a fresh water crayfish, marron (Cherax tenuimanus) (Decapoda: Parastacidae). Dept. Fish. Wildl. West. Aust. Rept. No. 63, 43 pp.

  • Morse, A. N. C., C. A. Froyd & D. F. Morse, 1984. Molecules from cyanobacteria and red algae that induce larval settlement and metamorphosis in the mollusc Haliotis rufescens. Mar. Biol. 81: 293–298.

    Google Scholar 

  • Person-Le Ruyet, J., 1975. Techniques of mass culture of a rotifer (Branchionus plicatilis Muller) and a branchiopod crustacean (Artemia salina L.). 10th European Symp. Mar. Biol., Ostend, Belgium, 17–23 Sept. 3: 331–343.

  • Person-Le Ruyet, J., 1976. Rearing of Artemia salina (Branchiopoda) larvae on inert food: Spirulina maxima (Cyanophycea). Aquaculture 8: 157–167.

    Google Scholar 

  • Reed, J. R., G. L. Samsel, R. R. Daub & G. G. Llewellyn, 1974. Oxidation pond algae as a supplement for commercial catfish feed. Proc. Ann. Conf. Southeast Ass. Game Fish Commrs, 27: 465–470.

    Google Scholar 

  • Richmond, A., 1986. CRC Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, Florida, 528 pp.

    Google Scholar 

  • Sandbank, E. & B. Hepher, 1978. The utilization of microalgae as feed for fish. Arch. Hydrobiol. 11: 108–120.

    Google Scholar 

  • Sandbank, E. & B. Hepher, 1980. Microalgae grown in wastewater as an ingredient in the diet of warmwater fish. In G. Shelef & C. J. Soeder (eds), Algae Biomass. Elsevier/North-Holland, Amsterdam: 691–706.

    Google Scholar 

  • Scott, A. P. & C. Middleton, 1979. Unicellular algae as a food for turbot (Scophthalmus maximus L.) larvae—the importance of long chain polyunsaturated fatty acids. Aquaculture 18: 227–240.

    Google Scholar 

  • Shelef, G., G. Oron & R. Moraine, 1978. Economic aspects of microalgae production on sewage. Arch. Hydrobiol. 11: 281–294.

    Google Scholar 

  • Shelef, G., Y. Azov, R. Moraine & G. Oron, 1980. Algal biomass as an integral part of wastewater treatment and reclamation system. In G. Shelef & C. J. Soeder (eds), Algae Biomass. Elsevier/North-Holland Amsterdam: 163–189.

    Google Scholar 

  • Sommer, T. R., 1988. Algal mass culture technology: applications for shellfish production. In L. H. Evans & D. O'Sullivan (eds), First Australian Shellfish Aquaculture Conference Proceedings. Curtin University Press, Australia: 226–233.

    Google Scholar 

  • Soong, P., 1980. Production and development of Chlorella and Spirulina in Taiwan. In G. Shelef & C. J. Soeder (eds), Algae Biomass. Elsevier/ North-Holland, Amsterdam: 97–113.

    Google Scholar 

  • Sorgeloos, P., 1973. High density culturing of the brine shrimp Artemia salina L. Aquaculture 1: 385–391.

    Google Scholar 

  • Sorgeloos, P., 1974. The influence of algal food preparation on its nutritional efficiency for Artemia salina L. larvae. Thalassia Jugoslavica 10(1/2): 313–320.

    Google Scholar 

  • Spinelli, J., L. Lehman & D. Wieg, 1974. Composition, processing and utilization of red crab (Pleuroncoides planipes). J. Fish. Res. Bd Can. 31: 1025–1029.

    Google Scholar 

  • Stanley, J. G. & J. B. Jones, 1976. Feeding algae to fish. Aquaculture 7: 219–223.

    Google Scholar 

  • Storrebakken, T., P. Foss, K. Schiedt, E. Austreng, S. Liaeen-Jensen & U. Manz, 1987. Carotenoid diets in salmonids. IV. Pigmentation of Atlantic salmon with astaxanthin, astaxanthin dipalmitate and canthaxanthin. Aquaculture 65: 279–292.

    Google Scholar 

  • Takano, H., 1967. Rearing experiments of brine shrimp on diatom diet. Bull. Tokai Reg. Fish. Res. Lab. 52: 1–11.

    Google Scholar 

  • Tanaka, Y., 1978. Comparative biochemical studies on carotenoids in aquatic animals. Mem. Fac. Fish., Kagoshima Univ. 27: 355–422.

    Google Scholar 

  • Tanaka, Y., H. Matsuguchi, T. Katayama, R. L., Simpson & C. O. Chichester, 1976. The biosynthesis of astaxanthin — XVIII. The metabolism of the carotenoids in the prawn, Penaeus japonicus Bate. Bull. Jap. Soc. Sci. Fish. 42: 197–202.

    Google Scholar 

  • Torrissen, O. J., 1984. Pigmentation of salmonids: effect of carotenoids in eggs and start-feeding diet on survival and growth rate. Aquaculture 43: 185–193.

    Google Scholar 

  • Walne, P. R., 1979. Culture of bivalve molluscs — 50 years experience at Conway. Fishing News Books Ltd., Farnham, Surrey, England, 191 pp.

    Google Scholar 

  • Watanabe, T. C., C. Kitajima & S. Fujuta, 1983. Nutritional value of live organisms used in Japan for mass propagation of fish: A review. Aquaculture 34: 115–143.

    Google Scholar 

  • Yannai, S., S. Mokady, K. Sachs, B. Kantorowitz & Z. Berk, 1980. Certain contaminants in algae and in animals fed algae-containing diets, and secondary toxicity of the algae. In G. Shelef & C. J. Soeder (eds), Algae Biomass. Elsevier/North-Holland, Amsterdam: 757–766.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, T.R., Potts, W.T. & Morrissy, N.M. Recent progress in the use of processed microalgae in aquaculture. Hydrobiologia 204, 435–443 (1990). https://doi.org/10.1007/BF00040268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040268

Key words

Navigation