Skip to main content
Log in

Limnological studies of and primary production in temple pond ecosystems

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Three temple ponds with permanent blooms of blue green algae were highly productive. They all showed high alkalinity, hardness, electrical conductivity and pH. Organic carbon and nitrogen were highest in Sarvatheertham pond—60 to 79.6 mg./l. C and 4.10 to 7.60 mg./l. N. In Tamaraikulam it was 16.5 to 20.3 mg. C/l. and 1.03 to 1.32 mg. N/l. In Sarvatheertham, the gross production ranged from 2.85 to 20.72 g. O2/m.2/d. Self shading by blanket algae of blue greens reduced productivity in Sarvatheertham, where a persistent thermal and biochemical stratification was noted. Very high organic carbon and nitrogen contents were noted in Sarvatheertham pond. The dry weight of plankton in this pond ranged from 430 to 900 mg./l. Productivity computed from diurnal changes in alkalinity and dissolved oxygen also revealed a high rate in Ayyankulam, Tamaraikulam and Sarvatheertham in descending order. Very wide fluctuations in pH, both diurnally and depth-wise, were recorded in Sarvatheertham and to a lesser extent in the other two ponds. Photosynthetic efficiency was 4.03% in Ayyankulam, 2.09% in Tamaraikulam and 1.56% in Sarvatheertham. By the diurnal oxygen curve method, a gross primary production of 97.5 g. O2/m.2/d was recorded in Ayyankulam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartsch, A. F. 1960. ‘Algae in relation to oxidation processes in natural waters’. The Pymatuning Symposia in Ecology. Spl. Publ. No. 2 Pittsburg. 56–57. Ed. C. A. Tryon, Jr. and R. T. Hartman.

  • Copeland, B. J. & Dorris, T. C. 1962. Photosynthetcc productivity in oil refinery effluent holding ponds. J. Water Poll. Contr. Fedn. 34: 1104.

    CAS  Google Scholar 

  • Daniels, F. 1956. Energy efficiencies in photosythesis in ‘Radiation Biology’ Vol. III, 259–292. Ed. A. Hollaender, McGraw Hill, N.Y.

  • Dunn, I. G. 1967. Diurnal fluctuations in physicochemical conditions of a shallow tropical pond. Limnol. & Oceanogr. 12 (1): 151–154.

    Article  CAS  Google Scholar 

  • Elster, H. J. 1962. Stoffkreislauf und Typologie der Binnengewässer als Zentrale Probleme der Limnologie. Naturwiss. 3: 49–55.

    Article  Google Scholar 

  • Fott, J. 1972. Observations on primary production of phytoplankton in two fish pond. Proc. IBP-UNESCO symp. on productivity problems of freshwaters. Warsaw (1970) 673–683.

    Google Scholar 

  • Ganapati, S. V. 1940. The ecology of a temple tank containing a permanent bloom of Microcystis aeruqunosa (Kutz) Henfr. J. Bombay Natl. Hist. Soc. 41 (1): 65–77.

    Google Scholar 

  • Ganapati, S. V. & Sreenivasan, A. 1972. Energy flow in aquatic ecosystems in India. Proc. IBP-UNESCO Symp. on productivity problems of Freshwaters (1970) 457–475.

    Google Scholar 

  • Ganf, G. G. 1972. The regulation of net primary production in Lake George, Uganda, East Africa in ‘Productivity problems of Freshwaters’. Proc. IBP-UNESCO. Symp. Warsaw (1970): 693–708.

  • Goldman, C. R. & Wetzel, R. G. 1963. Primary productivity of Clear Lake, California, Ecology 44: 283–294.

    Article  Google Scholar 

  • Hepher, B. 1962. Primary production of fish ponds and its application to fertilisation experiments. Limnol. & Oceanogr. 7 (2): 131–136.

    Article  Google Scholar 

  • Holsinger, E. C. T. 1955. The plankton algae of three Ceylon lakes. Hydrobiologia 7: 8–24.

    Article  Google Scholar 

  • Hutchinson, G. E. 1957. Treatise on Limnology I. Wiley. 1–1019.

  • Khanna, Renu & Sinha, S. K. 1972. ‘Harvesting the sun’, Science Today 7 (3): 43–47.

    Google Scholar 

  • Kimball, H. 1935. Intensity of solar radiation at the surface of the earth and its variations with latitude, longitude, season and time of day. Monthly Weather Review 63: 1.

    Article  Google Scholar 

  • King, Darrell, L. 1970. The role of carbon in eutrophication. Jr. Water Poll. Cont. Fed. 42 (12): 2035–2051.

    CAS  Google Scholar 

  • Kuetzel, L. E. 1969. Bacteria, carbondioxide and algal blooms. Jr. Water Poll. Contr. Fed. 41 (10): 1737–1740.

    Google Scholar 

  • Lagler, K. F. Bardach, J. E. & Miller, R. S. 1962. ‘Ichhyology’. Wiley, New York, 1–545.

    Google Scholar 

  • Morgan, N. C. 1972. Productivity studies at Loch Levan (a shallow nutrient rich lowland lake). Proc. IBP-UNESCO Symp. on Productivity problems of Freshwaters, Warsaw. (1970) 183–205.

  • Nielsen, E. S. 1955. The production of organic matter by the phytoplankton in a Danish lake receiving extraordinary amounts of nutrients salts. Hydrobiologia 7: 63–64.

    Google Scholar 

  • Oswald, W. J. & Golueke, C. G. 1960. Biological transformation of solar energy. Adv. appl. Microbiol. 2: 223–263.

    Article  CAS  PubMed  Google Scholar 

  • Paasche, E. 1960. On the relationship between production and standing crop of phytoplankton. J. du Cons. 26 (1): 33–48.

    Article  Google Scholar 

  • Prowse, G. A. 1972. Some observations on primary and fish production in experimental fish ponds in Malaccia, Malaysia. Proc. IBP Symp. 555–561, (1970).

  • Prescott, G. W. 1960. Biological disturbances resulting from algae popuulations in standing waters. Spl. Publ. No. 2, Pymatuning Laboratory of Field Biology. 22–37.

  • Rodhe, W. 1958. Primärproduktion und Seetypen. Verh. int. ver. Limnol. 13 121–141.

    Google Scholar 

  • Sreenivasan, A. 1964 (a). Limnological features of an primary production in a polluted Moat at Vellore, Madras State. Environmental Health 6: 237–245.

    Google Scholar 

  • Sreenivasan, A. 1964 (b). The limnology, Primary production and fish production in a tropical pond. Limnol. & Oceanogr. 9 (3): 391–396.

    Article  Google Scholar 

  • Sreenivasan, A. 1964 (c). Limnological studies and fish yield in three Upland lakes of Madras State, India. Limnol. & Oceanogr. 9 (4): 564–565.

    Article  Google Scholar 

  • Sreenivasan, A. 1964 (d). Diurnal Oxygen Curve method for studying the productivity of waters. J. Marine Biol. Assoc. Ind. 6 (1): 167–168.

    Google Scholar 

  • Sreenivasan, A. 1965. An instance of unusual oxygen production in a tropical impoundment. J. Marine Biol. Assoc. Ind. 7 (2): 469–471.

    Google Scholar 

  • Talling, J. F. 1961. Photosynthesis under natural conditions. Ann. Rev. Plant. Physiol. 12: 133–154.

    Article  Google Scholar 

  • Talling, J. F., Wood, R. B., Prosser, M. V. & Baxter, R. M. 1973. The upper limit of photosynthetic productivity by photoplankton: evidence from Ethiopian soda lakes. Freshwat. Biol. 3 (1): 53–76.

    Article  Google Scholar 

  • Teal, J. M. 1962. Energy flow in a saltmarsh ecosystem. Ecology 43 (4): 614–62.

    Article  Google Scholar 

  • Weber, C. I. 1963. A study of photosynthesis in Clear Lake, Iowa. Proc. Iowa Acad. Sci. 70: 681–684.

    Google Scholar 

  • Welch, H. E. 1968. Use of modified diurnal curves for the measurements of metabolism in standing water. Limnol. & Oceanogr. 13 (4): 679–687.

    Article  Google Scholar 

  • Wetzel, R. G. 1966. Variations in productivity of Goose and hyperautrophic Sylvan Lakes, Indiana. Invest. Indiana Lakes and Streams 7: 147–184.

    Google Scholar 

  • Wright, J. C. 1961. The limnology of Canyon Ferry Reservoir. IV. The estimation of primary production from physical limnological data. Limno. & Oceanogr. 6: 330–337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreenivasan, A. Limnological studies of and primary production in temple pond ecosystems. Hydrobiologia 48, 117–123 (1976). https://doi.org/10.1007/BF00040163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040163

Keywords

Navigation