Skip to main content
Log in

Floral expression of a gene encoding an E2-relatedubiquitin-conjugating protein from Arabidopsis thaliana

  • Short Communications
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

An Arabidopsis thaliana gene (UBC6) encoding a homologue to ubiquitin-conjugating enzymes has been isolated which is capable of encoding a protein of 183 amino acids of ca. 21 kDa. Northern analysis indicates that the gene is expressed in flowers, seeds and, to a somewhat lesser extent, in 10-day seedlings but not in mature leaves, callus and pre-flowering plants. This pattern of expression is confirmed using transgenic Arabidopsis plants containing a UBC6 promoter-GUS gene fusion construct. These plants displey GUS activity in mature anthers prior to dehiscence, in developing embryos, sepals and the style after pollination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ball E, Karlik CC, Beall CJ, Saville DL, Sparrow JC, Bullard B, Fyrberg EA: Arthrin, a myofibrillar protein of insect flight muscle, is an actin ubiquitin conjugate. Cell 51: 221–228 (1987).

    Google Scholar 

  2. Bienz M, Pelham HRB: Mechanisms of heat-shock gene activation in higher eukaryotes. Adv Genet 24: 31–72 (1987).

    Google Scholar 

  3. Binet M-N, Weil J-H, Tessier L-H: Structure and expression of sunflower ubiquitin genes. Plant Mol Biol 17: 395–407 (1991).

    Google Scholar 

  4. Burke TJ, Callis JA, Vierstra RD: Characterisation of a polyubiquitin gene in Arabidopsis thaliana. Mol Gen Genet 213: 435–443 (1988).

    Google Scholar 

  5. Chen K, Rubenstein I: Characterisation of the structure and transcription of the ubiquitin fusion gene from maize. J Biol Chem 265: 21835–21842 (1991).

    Google Scholar 

  6. Christensen AH, Sharrock RA, Quail PH: Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18: 675–689 (1992).

    Google Scholar 

  7. Courtney SE, Rider CC, Stead A: Ubiquitination of proteins during floral development and senescence. In: Battey WH, Dickinson HG, Hetherington AM (eds) Post-translational Modifications in Plants. SEB Seminar Series 53, pp. 285–303. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  8. Dunigan DD, Dietzgen RG, Schoelz JE, Zaitlin M: Tobacco mosaic-virus particles contain ubiquitinated coat protein subunits. Virology 165: 310–312 (1988).

    Google Scholar 

  9. Ferguson DL, Guikema JA, Paulsen GM: Ubiquitin pool modulation and protein degradation in wheat roots during high temperature stress. Plant Physiol 92: 740–746 (1990).

    Google Scholar 

  10. Girod P-A, Carpenter TB, van Nocker S, Sullivan ML, Vierstra R.D.: Homologs of the essential ubiquitin conjugating enzymes UBC1, 4, and 5 in yeast are encoded by a multigene family in Arabidopsis thaliana. Plant J 3: 545–552 (1993).

    Google Scholar 

  11. Glotzer M, Murray AW, Kirschner MW: Cyclin is degraded by the ubiquitin pathway. Nature 349: 132–138 (1992).

    Google Scholar 

  12. Goebl MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A: The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241: 1331–1335 (1988).

    Google Scholar 

  13. Hershko A: Ubiquitin-mediated protein degradation. J Biol Chem 263: 15237–15240 (1988).

    Google Scholar 

  14. Hoffman NE, Kenton K, Milkowski D, Pichersky E: Isolation and characterisation of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Mol Biol 17: 1189–1201 (1991).

    Google Scholar 

  15. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    Google Scholar 

  16. Jentsch S, McGrath JP, Varshavsky A: The yeast DNA repair genes RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329: 131–134 (1987).

    Google Scholar 

  17. Jentsch S, Seufert W, Sommer T, Raines H-A: Ubiquitin-conjugating enzymes: novel regulators of eukaryotic cells. Trends in Biochem Sci 15: 195–198 (1990).

    Google Scholar 

  18. Jentsch S, Seufert W, Hauser H-P: Genetic analysis of the ubiquitin system. Biochim Biophys Acta 1089: 127–139 (1991).

    Google Scholar 

  19. Jones JDG, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ Harrison K: Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1: 285–297 (1992).

    Google Scholar 

  20. Joshi CP, Weng J, Hguyen HT: Wheat ubiquitin gene exhibits a conserved protein coding region and a diverged 3′ non-coding region. Plant Mol Biol 16: 907–908 (1991).

    Google Scholar 

  21. Katagiri F, Chua N-H: Plant transcription factors: present knowledge and future challenges. Trends Genet 8: 22–27 (1992).

    Google Scholar 

  22. Lawton KA, Huang B, Goldsborough PB, Woodson WR: Molecular cloning and characterisation of senescence-related genes from carnation flower petals. Plant Physiol 90: 690–696 (1989).

    Google Scholar 

  23. Madura K, Prakash S, Prakash L: Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucl Acids Res 18: 771–778 (1990).

    Google Scholar 

  24. Marcotte WR, Russell SH, Quatrano RS: Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1: 969–976 (1989).

    Google Scholar 

  25. Michel D, Salamini F, Bartels D, Dale P, Baga M, Szalay A: Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum. Plant J 4: 29–40 (1993).

    Google Scholar 

  26. Mori S, Heldin CM, Claessonweish L: Ligand induced polyubiquitination of the platelet derived growth-factor beta-receptor. J Biol Chem 267: 6429–6434 (1992).

    Google Scholar 

  27. Naumovski L, Friedberg EC: Molecular cloning of eukaryotic genes required for excision repair of UV-irradiated DNA: isolation and partial characterization of the RAD3 gene of Saccharomyces cerevisiae. J Bact 152: 323–331 (1982).

    Google Scholar 

  28. Reynolds P, Koken MHM, Hoeijmakers JHJ, Prakash S, Prakash L: The rhp6 + gene of Schizosaccharomyces pombe: a structural and functional homologue of the RAD6 gene from the distantly related yeast Saccharomyces cerevisiae. EMBO J 9: 1423–1430 (1990).

    Google Scholar 

  29. Schulze-Lefert P, Dang JL, Becker-Andre M, Hahlbrock K, Schulz W: Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J 8: 651–656 (1989).

    Google Scholar 

  30. Schwartz LM, Myer A, Kosz L, Engelstein M, Maier C: Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron 5: 411–419 (1991).

    Google Scholar 

  31. Seufert W, Jentsch S: Ubiquitin conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9: 543–550 (1990).

    Google Scholar 

  32. Shanklin J, Jabben M, Vierstra RD: Red light induced formation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation. Proc Natl Acad Sci USA 84: 359–363 (1987).

    Google Scholar 

  33. Sullivan ML: Vierstra RD: A ubiquitin carrier protein from wheat germ is structurally and functionally similar to the yeast DNA repair enzyme encoded by RAD6. Proc Natl Acad Sci USA 86: 9861–9865 (1989).

    Google Scholar 

  34. Sullivan ML, Vierstra RD: Cloning of a 16-kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana. J Biol Chem 266: 23878–23885 (1991).

    Google Scholar 

  35. Takahashi T, Naito S, Komeda Y: The Arabidopsis HSP18.2 promoter/GUS gene fusion in transgenic plants: a powerful tool for the isolation of regulatory mutants of the heat-shock response. Plant J 2: 751–761 (1992).

    Google Scholar 

  36. Valvekens D, van Montagu M, van Lijsebettens M: Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536–5540 (1988).

    Google Scholar 

  37. Van Nocker S, Vierstra RD: Cloning and characterisation of a 20-kDa ubiquitin carrier protein from wheat that catalyzes multiubiquitin chain formation in vitro. Proc Natl Acad Sci USA 88: 10297–1031 (1991).

    Google Scholar 

  38. Veierskov B, Ferguson IB: Ubiquitin conjugating activity in leaves and isolated chloroplasts from Avena sativa L. during senescence. J Plant Physiol 138: 608–613 (1991).

    Google Scholar 

  39. Watts FZ, Moore AL: Nucleotide sequence of a full length cDNA clone encoding a polyubiquitin gene from Pisum sativum. Nucl Acids Res 17: 10100 (1989).

    Google Scholar 

  40. Wiebel FZ, Kunau WH: The PAS2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating enzymes. Nature 359: 73–76 (1992).

    Google Scholar 

  41. Wu RS, Kohn KW, Bonner WM: Metabolism of ubiquitinated histones. J Biol Chem 256: 5916–5920 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, F.Z., Butt, N., Layfield, P. et al. Floral expression of a gene encoding an E2-relatedubiquitin-conjugating protein from Arabidopsis thaliana . Plant Mol Biol 26, 445–451 (1994). https://doi.org/10.1007/BF00039553

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039553

Key words

Navigation